Automatic hierarchical data extraction from relational
databases

Student: Diego Arenas Contreras
Supervisor: Prof. Peter Buneman

Master of Science
Data Science
School of Informatics
University of Edinburgh
2016

Abstract

The problem of extracting hierarchical data from a curated relational database
is addressed in this project. It is assumed low or non existent prior knowl-
edge about relationships in the database. The approach is using the metadata
available of the database and also the use of reverse database engineering to
make educated guesses about relationships between the data or suggesting to
the designer paths of data integration. The objective is to get the hierarchical
data to deliver the data in a NoSQL format. Methods like reverse engineer-
ing, metadata exploration, graph analysis, statistical analysis and automatic
query construction are used in this project. Statistical methods are used as
heuristics to find all possible candidate keys and to find relationships between
tables that are not explicitly defined in the database.

Acknowledgements

I would like to thank my project supervisor professor Peter Buneman of the
School of Informatics at The University of Edinburgh. For the possibility to
work on this project and for his guidance during this period. This report
marks the end of a year of personal and professional growth.

I would also like to thank my parents, Maggie and Ral, for providing
me their unconditional support. Thank you to my family, my friends and
classmates. For all the good and bad things in live because without them I
couldn’t be here.

Diego Arenas C.
Edinburgh, Scotland, August 18, 2016.

Contents

1 Introduction

2 Background

2.1 Literature Review
2.2 Problem Statement

2.2.1 Assumptions.
2.3 Methods and techniques
2.4 Possible cases L

3 Work Undertaken

3.1 PostgreSQL
3.2 Metadata exploration
3.3 Graphanalysis
3.4 Statistical analysis
3.4.1 Data frequencies
3.4.2 Attributeoverlapo
3.4.3 Primary key checking
3.5 Summary of the process

4 Evaluation
4.1 Results from iuphar database

5 Conclusion

5.1 Further work
5.1.1 Big Data implementation
5.1.2 Beyond single attributes
5.1.3 Optimization to the process

A Basic Metadata Structures in SQL

41

Chapter 1

Introduction

Many relational databases encode hierarchical data. Can we extract one or
many hierarchies automatically?

In this dissertation project report we provide heuristic methods to solve
the problem of how to automatically extract hierarchical data from a rela-
tional database.

The system’s heuristics will make use of the metadata of the relational
database. The system will use the definitions of the database as they are
stored in the database engine and also it will apply analysis using graph
theory and statistical analysis. The statistical analysis can be used to explore
any data source.

The solution is implemented using PostgreSQL database engine and Python
programming language, but it can be implemented for most of the database
engines in the market and also using any programming language that allows
connections to the database engine.

The project is implemented in three connected phases or stages.

The first stage is the analysis of the metadata structures on the database
engine. This exploration will lead to identify and classify the type of tables
and relationships in the database. We will be looking for those kinds of
relationships that may represent a hierarchical structure. The IS-A type
relationship will be searched for the algorithms and heuristics of this project.

The second stage, is a graph analysis phase. This phase will make use of
the data collected during the first phase. A directed graph is created using

the relationships between the tables as edges and the tables as nodes. In
this phase is important to find the existence of loops, that would indicate
recursion in the connections. In the presence of loops it is necessary a way
of solving them using heuristics before to retrieve the hierarchical data from
the database. The directed graph is also to visualize the database and gain
a better understanding of the organization of the database. Some graph
measures like degrees or connected components are calculated to explore in
detail the database.

The last stage is statistical analysis. In this stage heuristics are based on
data frequency calculations to provide enough information to make educated
guesses about the content of the database. Exploratory data analysis with
statistical measures are computed. The statistics will provide good under-
standing about the content in the database but also they are used to look
for possible relations between tables that were not present in the definition
of the database.

The use of metadata as a main resource is based on its ability to provide
information at low processing times and low storage space requirements. We
avoid any real-time query to the database due to performance reasons; in-
stead, there is a pre-processing phase in the first stage. Several metadata
tables are created and organised in ways to facilitate and optimise data ex-
ploration and analysis in the following stages.

The reason to make it automatically is that we can leave the system run-
ning in background mode and then analyse the results, also all the hypothesis
about hierarchies will be formed considering all the information available.

In this report RDBMS or database engine will be terms to refer to the
database administration software. And the term database or tuphar will be
used to refer to the data bank where the data for this project is stored. The
RDBMS will handle the database.

In section 2 we present the background section of the project, references
to previous work and a the setting of the work it is attempted in this project.
Section 3 describes the conceptual design work and the actual implementa-
tion. Also contains the problems or difficulties and the suggested solutions.
In section 4 there are results and critical analysis about the project. And
finally in section 5 there are remarks and observations, unsolved problems,
and suggestions for further work.

Chapter 2

Background

2.1 Literature Review

The relational data model [Codd, 1970] present advantages to the graph data
model, but relational databases do not naturally represent hierarchical de-
pendencies between data.

There are ways to represent hierarchical data in relational data models
but there is not a way to specify this relation. The relation must be inferred
by the user. The explicit way of representing hierarchies in a relational
database model is using constrain references. The link between two tables
can be understood as a hierarchical relationship in some of the cases, that is
why expert analysis is needed to identify this relationship.

Elicitation Process. Is process of finding the structure of the database
through the analysis of its structure and content. Having the original struc-
ture it is possible identify hierarchical relationships between tables. The
problem of elicitation in databases has been subject of research with different
approaches and techniques. Techniques of reverse engineering [Lammari et al., 2007
has been suggested or simply Data Reverse Engineering [Henrard and Hainaut, 2001].

The problem of Generalization/Specification (G/S) [Smith and Smith, 1977]
is an example of hierarchical representation of data in Codd’s relational
model. The authors mention that the relational schema support two types of
abstraction, Aggregation and Generalization. We are interested in the latest
concept as is the one used to represent IS-A relationships. Aggregation type

relations are hierarchical data representation, but they will be discarded for
the purposes of this project as they represent simple relationships between
tables and not necessarily semantic extensions of an object.

In [Lammari et al., 2007] the authors propose the MeRCI reverse engi-
neering approach [Akoka et al., 1999] to extract generalization hierarchies
from relational databases. The method involves the analysis of the DDL
specifications then and optimization of the structures extracted and finally a
conceptual schema. They define the applicability domain of an attribute or a
set of attributes as the set of possible values that the attribute can take. The
domain of an attribute A is denoted as Dom 4. They present three definitions
to deal with attribute domains:

o Mutual existence dependency when Dom, = Domgp.

o Fxclusive existence dependency when the intersection is empty, Dom 4N
Domp = O and,

e conditioned existence dependency when Dom s C Dompg. A set of rules
are defined to check data dependencies and identify hierarchical struc-
tures from the relational model.

For [Lammari et al., 2007] the focus is in attribute domain. In this report
we present a similar approach but based on the frequency of the attributes
rather than in the domain. The definition of attribute overlap will be defined
in the next section.

In [Karagiannis, 1994] the authors present a method to extract object
oriented model from a relational model. They semantically enrich the ob-
ject oriented from a relational database. Their model is a semantic exten-
sion of object oriented models. Their model captures semantic relationship
from the relational model. They identify three dimensions of the relational
model: Classification/Instantiation; Generalization/Specialization and Ag-
gregation/Decomposition. And from there they create a object oriented
model. In [Fong, 1997]

The approach in [Alhajj, 2003] is extracting the model from a legacy
database. This particular idea is interesting for this project because is based
on the use and content of the database rather in the original definition of the
database. A legacy database has similarities with a curated database. Both

8

can have a disperse community of developers, the same dispersion applies to
the documentation. In their approach user involvement is minimized, sim-
ilar to what we intent with this work. They suggest improvements to the
relational model analyzing relationships of the type many-to-many, in this
report we present a way to identify and explore possible connections between
tables that have a many-to-many relationship from a statistical approach.

In [Henrard and Hainaut, 2001] a database reverse engineering approach
is presented. It is based in the analysis of the source code of the program.
The approach is looking to reconstruct semantic connections between the
data that are not represented in the relational data model. Data dependency
is the name of the process and consists of the use of foreign keys for represent-
ing and analyzing connections inside the database. The approach includes
a first step where the analysis participate in interviews and demonstrations
to gain knowledge about the database. In this project the interaction are
minimal or non-existent since the process is designed to be automated. The
authors include two more phases. The analysis of the DDL code to create a
physical schema. And finally a data structure conceptualization, consists in
detecting non-conceptual structures to refine the final data model.

This project is highly based on referential integrity constraints [Date, 1981]
and will explore and analyse the database and its content through the re-
lationships between the tables, it will try to find connections that were not
explicitly defined in the definition of the database. The system analyses the
structure of the database using its metadata. Graph analysis and statistical
analysis are used to find whether or not there exists a IS-A relationships.

The system considers the content of the database and not its design in-
tentions. The use of the database may change over time, so it is necessary
to consider the current state. This approach gives a flexible understanding
of the use of the database.

The common approach in literature for early stages of database reverse en-
gineering to use the DDL code to extract the database structure [Henrard and Hainaut, 2001]
[Lammari et al., 2007] [Yeh et al., 2008] [Alhajj, 2003]. Our approach makes
use of the metadata available in the database engine allowing to create con-
nections to different databases while the system is running. The system will
request all the necessary data and does not need to be fed with any file or
script with the database definition.

2.2 Problem Statement

Several databases have a hierarchical nature but they are often represented in
a relational model. One of the aims of this project is to see if the hierarchical
representation can be extracted from the relational model and see if this
process can be reversed.

How to extract hierarchical data from a relational database in an auto-
mated process is the problem of this MSc Dissertation Project.

The system uses the metadata of the relational model, graph analysis and
statistical analysis. The use of this methods make the process reproducible
for almost any database engine and programming language. It is also pos-
sible to create a distributed version using Hadoop-alike systems to process
data, this discussion is included in section 5.

The iuphar database! is the database used to test this project. The
iuphar database is a curated database with pharmacological data. It receives
updates from contributors and it is possible that no single person knows the
complete structure of the database. The objective of this project is to extract
hierarchical data from this database.

The implementation of the analysis and data processing is on PostgreSQL
and Python, but it can be implemented for any database engine that stores
metadata about the databases and in any programming language able to
establish a connection with the selected database engine.

The exploration of metadata structures can be done on different database
engines like MySQL, SQL Server, DB2, Oracle Database, etc. allowing the
implementation of this project idea for most of the database tools available in
the market. The algorithms and methods implemented for PostgreSQL can
be implemented for other database engines. The structures to store metadata
will not change, they also can be implemented in any programming language.

2.2.1 Assumptions

It is assumed that the test database has an entity relation (ER) model ap-
proach and make use of referential integrity. This means that the references
can be found in the definition of the database. Also it is assumed that a

Thttp://www.iuphar.org

10

primary key is the unique identifier for a tuple in the tables of the database.

2.3 Methods and techniques

Metadata Exploration. A revision of the PostgreSQL documentation was
the first part of the project. All the important tables were identified with
the aim of getting information about the database structure. Then new data
structures were created to store this information and complementing it with
calculations like number of records, number if distinct values per attribute
and some classification of the table and references that will be explained in
section 3.

Graph analysis. Reference constraints are used to create a directed
graph representation of the database. The analysis of the graph will lead to
an understanding of the structure. From this analysis we present a classifica-
tion of the nodes in five categories and of the edges in three categories. The
objective is identify those categories with hierarchical structures.

Statistical Analysis. A data frequency calculation will be computed for
each attribute in the database. the data frequencies of each attribute will be
used to compute a new measure called attribute overlap. The interpretation of
this measure is the level of overlapping between two attributes from different
tables. This will help to decide if two tables are maybe related and also is
useful to decide the direction of the hierarchy analyzing the results of the
data frequencies of each table.

2.4 Possible cases

The system will gather data and apply categories to differentiate tables and
relationships. These classes or labels are based on the use of primary and
foreign keys in the tables and also in the relative position of the table with
respect to the other tables in the relational data model.

Depending on the use of attributes as primary or foreign keys, tables are
classified in one out of five types suggested in this project.

11

’ Table type ‘ Description

Root Table Table with no parent table, it doesn’t contain
a reference to other table on top. There are
references pointing to this table.

Linking Table Represent an intersection between two ta-
bles. Also the PKs of this tables is formed
by its FKs.

Foreign Relation | A table with FKs that are not part of the PK
of the table.

Composed PK | A table with FKs where some of them are
with FK part of the PK of the table.

Isolated Table A table without references to other tables of
the database.

The same process of classification is applied to the relationships between
tables.

’ Reference type \ Description ‘

Exact key When the referenced attribute is the PK in
the referencing table.

Part of the key | When the referenced attribute is part of the
PK in the referencing table.

Not key When the referenced attribute id not part of
the PK in the referencing table.

This classification of tables and references will allow to visualize the ta-
bles and its relationships in the database using directed graph representation.
Tables are the nodes of the graph and the references are the edges between
nodes; as the reference can be interpreted with a direction then it is possible
to create a directed graph and to represent the different types using different
colors.

In Figure 2.1 we can see and example of six tables and the relationships
between them. The tables are ligand2synonym refs; ligand2synonym, lig-
and, ligand_structure, ligand2meshpharmacology, peptide and reference. In
the figure, ligand and reference tables are Root Tables because they are
receiving references from other tables and these two tables do not have any
dependency to any other table in the database. Table ligand_structure
is an Isolate Table because it has no connections to other tables. lig-

12

and2synonym table is a Foreign Relation type, meaning the attributes
with referential integrity not part of the primary key of the table; the refer-
ence to ligand table s showing a hierarchical relationship between these two
tables. ligand2synonym refs is a Linking Table, meaning its primary key
is formed by its two foreign keys. And finally ligand2meshpharmacology
table is a Composed PK with FK type, meaning its primary key is a
combination of own attributes and attributes with referential integrity.

At the same time, we can use the example to explain the classification of
the references. The relation between peptide and ligand table is an Exact
key type, meaning the primary key of peptide is a foreign key referencing
to the ligand’s primary key. The relation between ligand2synomym _refs
with ligand2synonym and reference tables is a Part of the key relation-
ship, meaning the primary key of ligand2synonym refs is composed by
the foreign keys to ligand2sysnonym and reference tables. And finally, the
relationship between ligand2synonym and ligand is of the type Not key,
which means ligand2synonym is not using foreign keys as part of its pri-
mary key.

13

ligand

Iigand.ucture

ligand2mes

Figure 2.1: Example of tables and reference types.

14

Chapter 3

Work Undertaken

As it was mentioned before, the process to address this problem consist of
three phases. The first one is the exploration of the metadata. A graph
analysis and finally a statistical approach using data frequencies of the data
values to get more information about possible relationships among the data.
The diagram is in Figure 3.1.

Statistical
Analysis

Metadata —| Graph Analysis —»

Exploration

Figure 3.1: The three stages of the process.

Technological tools and libraries used in this project are:

e PostgreSQL 9.5 database engine': As a database engine where the
iuphar database is stored. Using PgAdminlII client of PostgreSQL is
possible to execute and test queries against the database.

e SQL language: The required data structured are created as tables in
the database. This will take advantage of the performance of the server
where the database engine is installed.

e Jupyter notebook environment for Python development?: The Python
code is written and tested in a notebook of the former iPython envi-
ronment, allowing a faster development and testing of the code.

Thttps:/ /www.postgresql.org
http://jupyter.org

15

e Python programming language: The logic of the system is implemented
in Python, auto-query generation is implemented in Python functions.
The SQL commands are sent to the database using a Python library for
this purpose. The graph analysis is computed using a Python library
for this purpose.

e networkx® Python library: This library offers several functions to per-
form a graph analysis and also basic visualization tools.

e psycopg? Python library: This library is used to establish connections
with PostgreSQL. Allows to send sentences and perform changes in the
database with commits.

e Gephi®: A software for graph visualization and exploration.

The coding component of this project is implemented using two tools.
Python is used to create the logic of the system. Jupyter Notebook is
used to write Python code. Python is connected to the PostgreSQL database
engine using the psycopg library. This library allows to send queries and
sentences to the database.

Python is used to structure the process but is not intended to use it to
perform any high demand data processing. The data processing tasks are
implemented in SQL code and they will be sent to the database engine to
perform these high demand data processing tasks. This design criteria is
relying on the capacity of the server where the database engine is installed.
It is expected that if the server is capable of storing considerable amount of
data, will be capable enough to perform queries and analysis of its databases.
This assumption applies to any size of database.

The SQL code is written in standard SQLS, avoiding the use of specific
functions implemented in specific database engines, so the code can run in
different database engines. A new connection in the Python code has to be
implemented to the specific new database.

The term Metadata can be understood as data about data, that is not
the original data. This data about the data can be found in almost any
database engine in the market.

3http:/ /networkx.github.io

4http://initd.org/psycopg/docs/

Shttps://gephi.org

Shttp://www.contrib.andrew.cmu.edu/ shadow /sql/sql1992.txt

16

The following subsections will explain the work undertaken with each one
of the tools selected for this project.

3.1 PostgreSQL

The first phase is the exploration of metadata in PostgreSQL. It is necessary
to design and create structures with the table and attribute names, and with
primary and foreign keys. This information is used during the graph analysis
and statistical analysis phases, also will be used for auto-generation of the
queries to explore the database and to export the results.

The first goal for this metadata exploration is to have enough information
to generate a query using table name and all attribute names. Then, it is
expected to have enough information to generate a simple join between two
tables using single attributes as part of the JOIN instruction. Accomplishing
this goals implies that the metadata collected has the required information
about references between tables. The constraint references are crucial to
identify to create a directed graph with the database tables.

PostgreSQL Information Schema contains the metadata about the
database in the server. There are tables with information about table names,
attribute names and its relationships. The constraints are also stored in this
schema. The information schema can be accessed in PostgreSQL 9.5 in the
postgres database, under Catalogs, then PostgreSQL (pg_catalog) and
in Tables there are the relevant structures with metadata for this project.
The tables that are be used for this project are the followings:

e pg class
e pg_ attribute

e pg_constraint

A data structure with every attribute of the database is created. It con-
tains table name, attribute name, a flag indicating if the column is a primary
key, a flag indicating if the column is a foreign key, and the foreign table and
attribute names if a reference is found.

Using this basic structure with metadata it is possible to aggregate in-
formation, and to create other data structures to generate a directed graph,
to infer information about the type of relationships between the tables and

17

to identify whether or not attributes are used as foreign or primery keys in
their respective tables. The SQL code is in Appendix. A.

3.2 Metadata exploration

Having identified all the attributes and its corresponding tables, knowing if
the column is a primary key or a foreign key. The following data structure
is created to facilitate the process of identifying relationships.

’ Attribute ‘ Description ‘

relfilenode Code of the table in PostgreSQL.

relname Name of the table.

attname Name of the attribute or column.

datatype Type of the attribute.

attnum Position number of the attribute in the table.

oid ID of the attribute in PostgreSQL.

conname Name of the primary key constrain.

pk Flag to indicate if its a primary key.

tk Flag to indicate if its a foreign key.

link Flag to indicate if its a link table.

foid ID of the referenced column.

fconname Name of the constrain of the foreign key.

frelname Name of the referenced table.

confkey Array with position numbers of the at-
tributes used in the constrain.

fattnum Position number of the attribute in the ref-
erenced table.

fattname Name of the attribute in the referenced table.

3.3 Graph analysis
The second phase is the graph analysis. The aim is to search for loops among

the connections of the database. The references extracted from the metadata
are enough to build a directed graph.

18

The nodes represent the tables of the database. The edges are the con-
strain references between tables.

This directed graph allows to run a visual check about relationships and
also to apply graph measures to analyse the results. A graph representation
with Gephi is in Figure 3.2.

Beside a visual check for loops in the graph, some measures for graph
analysis are computed using the networkx Python library. Networkx con-
tains several algorithms and measures for graph analysis and can be used
for basic graph visualization with matplotlib.pyplot Python library. For a
better visualization it is used the software Gephi.

A directed graph can be build using tables as nodes and references as
edges. Information like the number of nodes, number of edges, number of
connected components, average degree, number of cycles can be extracted
using the networkx library. The measures are presented in the following

table.
’ Measure \ Value ‘

Number of nodes: 159

Number of edges: 231

Average in degree: 1.4528

Average out degree: 1.4528

Is strongly connected? False

Is directed acyclic graph? True

The directed graph can be transformed into an undirected graph and
calculate a couple of aditional measures like if whether or not there are cycles
and how many connected components (CC) are in the graph.

There are 6 connected components. A big CC of 153 nodes, a second
CC of two tables [celltype] and [celltype_isa]; and four isolated tables that
forms a CC by themselves [version], [ligand_cluster_old], [ligand_physchem|
and [ligand_structure].

There are 78 cycles in the undirected graph of the database. An example
of cycle with 5 tables is presented in Figure 3.3.

Cycles are not present in the directed graph. It is possible to form hi-
erarchies using the nodes. Duplication may occur due to references to more
than one table. This situation implies at the moment of forming hierarchical
structures to extract the data one or more path can be formed and it is the
designer responsibility to decide what path to use.

19

cun.ﬁlar ~— n_
ligand_§ .'uclum ~ ﬂ"'! omu}'ﬁ_ﬁew
| subcdfimittes 9™ e

® delote@ramity —

ligand 2

||ga.<nn \
pmurso.ynonym _ Hgnnd._uhunit

con bjuct \

expres.n Ievel M{
ligand_dilister_old - drugd@kease \ trandgh
P or - ceUuhr— .

—F

—/ ucllu}a\&c/atliin S
precun.g\e‘ptlde// co ‘l_\r\

expressiol £

e
|

ligand

peptldo i uence_cluster

: 3 N A netion_refs .
mmu‘["??ff - NN ki V) 3 - assucin.,,pl::::‘ ’
e : ook

| assoc inl otein_refs

rtrer
| l:a‘talytf.ecoplor
primarx r‘llatur refs

gH pzl\ame}i

\!;um:lucthn stntel mh

([pﬂﬁlqry"gulﬂur
recepn‘uhunlt AN /| \other@rotein .. binding_BHner refs
grac_functiond haracterl\aﬂ{:s | \CM"' cluster targﬂ_‘le_rﬁs

lltered e:‘selon ofs
snﬂ:iﬁcﬂ.c‘llun _refs
aglt.ltl‘l'il:

hl‘nd

t(.."‘ I m. i ligand_fByschem
O

Figure 3.2: Graph representation of the iuphar database with Gephi.

20

Figure 3.3: Example of a cycle in the undirected graph of the database.

3.4 Statistical analysis

The third phase is the statistical analysis. There are two main groups of
analysis in this phase. The first is analyzing the metadata and the other one
is analyzing the data, meaning the data values stored in each attribute.

It is necessary to run a couple of pre-processing tasks to prepare the
data. These tasks are the computation of data frequencies and the rate
of joins. These two new data structures will contain enough information
to suggest two novel implementations of use of metadata in data exploration
processes.

These implementations are extensions of the idea of extracting hierar-
chical data from a relational database but are not bounded to this specific
problem, they can be useful on any data exploration problem whenever is
required to provide sound information about the database.

3.4.1 Data frequencies

From the data gathered in the first stage of the project, it is simple to auto-
generate queries to calculate data frequencies of the data values of each at-
tribute of each table in the database and store it with the following structure.

21

’ Attribute ‘ Description ‘ Type ‘
entity Table name in the database. VARCHAR
field Attribute name. VARCHAR
data_value | Value that the attribute can its | VARCHAR
value from. Each data value ap-
pears only once per field and en-
tity.

frequency | Number of times the data_value | INTEGER
was found in that field in that en-
tity.

percentage | Calculation of the frequency of | DOUBLE PRE-
the data_value over the total | CISION

number of records of the table.

It will be necessary to get tuples with table and attribute names of every
attribute in the database. This pairs are stored in a list to auto-generate
queries to send to the database and calculate data frequencies. An extract
of the code is in Listing 1.

The utility of having the frequencies computed is that through simple
rules it is possible to pointed out information about the data as insights for

the designer.

“70% of the 10 records are null values in full name attribute of the
accessory_protein table.”

“100% of the 12938 records in the ontology_id attribute in the allele
table, have the value ‘1°.”

“91% of the records in the species_id attribute in the altered_expression
table, have the value 2.”

“The second most frequent value in the database_id attribute of the
database_link table is ‘42’ with 7985 records that represents 13% of the
total.”

“‘enzyme’ is the most frequent value in the type attribute in family

22

table with 303 records and 43% of the total.”

“The attribute database_id of the disease_database_link table has 3
values: ‘1’, ‘38 and ‘56’ with 37%, 38% and 25% respectively of the 2250
records of the table.”

Creating rules using thresholds and selecting important attributes and
tables it is possible to generate a pool of information that can be used to
explore and analyze the database. The sentences generated can be used
directly for presenting insights. And also can be used to present specific
information in screen to the designer about the database.

3.4.2 Attribute overlap

The second novel implementation is the attribute overlap measure. Its a
measure of the level of intersection of two single attributes from different
tables. This calculation is applied to every attribute from every table in the
database.

The calculation turns into a simple sum when the data from the fre-
quencies table is used. Because the intersection between two tables through
a single attribute can be computed using a simple join of the unique data
values in the attribute

{teABseB-tla =t} _,
|Al -

This process is computed using the data frequency of the values, a join
of a single attribute per table is computed using the data value field. This
approach assure the uniqueness of the data values in the structure also the
attribute overlap is calculated simply adding the values of the frequencies
and adding the values of the percentages. The operation is calculated using
LEFT and RIGHT JOIN for every table-attribute.

For example, considering tables S1 and S2 in Table 3.1. Table S1 with
4 records and 4 distinct values and table S2 with 100 records and 3 distinct
values. The attribute overlap between this two tables is that 50% of the 4
records in sid of table S1 are present or contained in table B, and that 99%
of the 100 records in sid of table S2 are present or contained in table S1.

23

| 51 | | 52

|

] data_value \ frequency \ percentage ‘

’ data_value \ frequency \ percentage ‘

3.1415 1 0.25 1618 1 001
42 1 0.25
42 89 0.89
64 1 0.25 64 10 01
128 1 0.25 '

Table 3.1: Tables S1 and S2.

The previous results are showing that there is a potential relation be-
tween these two tables, because 99% of the records in S2 can be mapped
from table S1. The next step is to check whether or not the values in both
tables are unique. There are three possible cases: 1) the values in both tables
are unique; 2) the values in one of the tables are unique and; 3) the values
in both tables are not unique. In 1) it can be suggest that there is an IS-A
relationship between the tables. In 2) it can be a case of data dependency
where the table with unique records can be referenced by the other table, the
relationship can exists. And in 3) the relation using those attributes exists,
there must exists a third table or more tables with unique records, such that
these two tables are related to a parent table where their data values are
unique; if we allow this connection it will create a cartesian product.

The attribute overlap is good enough to identify relationships between
tables without creating a cartesian product, meaning a multiplication of the
records because the attribute overlap is always calculated with unique data
values and its their frequency and percentage the measures that are summed
up.

The Python code of this process is presented in Listing 2 and the call
to the function simulating a cartesian product between every table-attribute
pair is presented in Listing 3.

The exact percentage of intersection between two attributes from different
tables is calculated adding the percentage field from the data frequency table.
This optimises computing time performance because is not performing the
join operation between the tables, it is simulating the join using unique values
from each table. The worst case time will be equal to the actual performance
of the JOIN operation between the tables when every data value from each
table is unique.

24

Adding up percentages is an efficient way of calculating the attribute
overlap measure or the intersection rate between two tables. The metadata
collected about references in the definition of the database plus the attribute
overlap calculation allows us to have enough information to decide whether or
not a relationship between two tables correspond or not to a IS-A relationship
or to a relationship that implies a hierarchical structure between the tables.
If the tables have a high attribute overlap in one of the directions and both
attributes have unique records, then we can say that there is a potential
hierarchical relationship between them. It will be labour of the designer to
decide if the relationship is real or not.

The simulation of a cartesian product using all the attributes in the
database allows to spot possible relationships between tables that were not
defined in the definition of the database schema. But also allows to perform
this checking against external data sources. And it is not restricted to struc-
tured data but unstructured data can be scanned with this approach.

Access to attrite overlap measures of the complete database is usually
not provided by any data analytical tool. The benefits for data exploration
when the designer knows little or have no insights about the content of the
database. This process can be a powerful tool for data analysis finding new
relations in the database.

When working with one database seems trivial for the designer to know
about the content of the database. But this analysis can extend its capabili-
ties to external datasets to the repository. Understanding the term repository
as the set of internal databases, datasets and data sources of the organization.

The attribute overlap process is designed to run automatically, it auto-
generates the necessary SQL code to extract and analyze all the data in a
specific database or repository. It can be extended to analyse unstructured
data sources.

The results of the attribute overlap gives an understanding of how pos-
sible is that two tables can be related to each other. The following result is
from a tuple that represent a real relationship in the database:

“The table altered_expression can be related to altered_expression_refs
through the attributes altered_expression_id and altered_expression_id
respectively, because 99.7% of the 1742 records of the first table are in the
second table and 100% of the 2360 records of the second table are present

25

in the first table.”

Potential problem. There is a risk of finding spurious connections. For
example, when a pair of attributes have more or less the same number of
records and both are sequences. In this case when attribute overlap will
be high in both directions. Additional information must be provided to the
designer to make an educated guess about the possible relationship found.

A problem with this approach is the spurious relationships that can be
found. The following is an example of this case because the field display_order
is present in several tables and it is used to sort the data when its presented.

“The table contributor2family can be related to contributor2object
through the attributes display_order and display_order respectively, be-
cause 99.2% of the 913 records of the first table are in the second table and
100% of the 3164 records of the second table are present in the first table.”

When a table is empty, there is no way of getting information with the
statistical analysis. But as the objective of this project is to extract hierar-
chical data from a relational database, empty tables result of no interest for
the project. Empty tables can be identified in the statistical analysis phase.

3.4.3 Primary key checking

Sometimes, even databases with no hierarchical structure may have a com-
posed primary keys in its tables. This primary key will be formed from two
or more references to other tables. It can be the case that one of the columns
of the primary key will contain the others, meaning the values of a single
column are unique, or near to be unique, and is enough to identify a the tu-
ple. In this case, when one attribute is enough to represent the uniqueness of
the tuple, it may be understood as a hierarchy, because that single attribute
comes from the referenced table.

[N <1
Al ~

If the result of the number of distinct values of the attribute A, N,,
divided by the number of records in attribute A, |A[, is equal to 1, then A is

26

a candidate key. This also can be true for values near to 1, considering some
inputs as mistakes of special cases where the data needs to be duplicated.

The same calculation is performed to establish if there is a potential hier-
archical relationship in the previous section for the attribute overlap measure
and to calculate the uniqueness of the data values of an attribute.

3.5 Summary of the process

The benefits of this approach are listed bellow:

The approach allows to identify hierarchical relationships, classify them
and make suggestions to the designer.

Calculates potential candidate keys for each table and identify potential
relationships between tables.

The data frequency calculations turns very easy to present automatic
insights from the database or repository.

Automatic semantic interpretation from the stored data.

Rapid analysis of the level of integration between data sources.
Access to potential relationship between all the data in the database.
Efficient way to calculate possible relationships between tables.

Enable to perform the this analysis with more than one database, but
with external data sources, with structured or unstructured formats.

It is an automated process that can run in the background and provide
useful information about the databases.

Allows to identify many-to-many relationships and then search for ta-
bles that can make a link between them. This would cause a cartesian
product using a direct query between those two tables.

27

def insertDataPercentage(tname, aname, data_value, fnumber,
< pnumber):
cur.execute("INSERT INTO frequencies (entity, field,
- data_value, frequency, percentage) VALUES (%s, %s, %s, %s,
<~ %s);", (tname, aname, data_value, fnumber, pnumber))
conn.commit ()

def getDataDistribution2(table, attribute):
cur.execute("select "+attribute+" \
, count(a.*) as n \
, count(a.*) * 1.0 / t.n as percentage \
from "+table+" as a \
inner join \
(select count(*) as n from "+table+") as t \
on 1 =1\
group by "+attribute+", t.n;")
rows = cur.fetchall()
for row in rows:
insertDataPercentage(table, attribute, row[0], row[1],
< rowl[2])
print table, attribute, row[0], row[1], row[2]

cur.execute("select distinct relname, attname from summary
< order by 1,2;")
rows = cur.fetchall()
for row in rows:
getDataDistribution2(row[0], row[1])

Listing 1: Python code example of data frequency calculation.

28

def insertJoins(tablel, table2, attl, att2):
cur.execute("select fil.entity \
, f2.entity as entity2 \
, f1.field \
, f2.field as field2 \
, count(distinct f1.data_value) as num_values \
, sum(fl.frequency) as sum_freq \
, sum(fl.percentage) as sum_perc \
, count(distinct f2.data_value) as num_values2 \
, sum(f2.frequency) as sum_freq2 \
, sum(f2.percentage) as sum_perc2 \
from (select entity, field, data_value, frequency,
- percentage \
from frequencies \

where entity = ’"+tablel+"’ \
and field = ’"+attl+"’) as f1 \
left join \

(select entity, field, data_value, frequency,
< percentage \
from frequencies \
where entity = ’"+table2+"’ \
and field = ’"+att2+"’) as f2 \
on f1.data_value = f2.data_value \
group by 1,2,3,4;")
rows = cur.fetchall()
for row in rows:
if row[1] <> None:
cur.execute("INSERT INTO joins (entity, entity?2,
field, field2, num_values, sum_freq, sum_perc, num_values2,
sum_freq2, sum_perc2) VALUES (%s, %s, %s, %s, %hs, hs, %S,
hs, hs, hs);",
(row[0] ,row[1] ,row[2] ,row[3] ,row[4] ,row[5],rowl[6],rowl[7],
row([8], row[9]))
conn.commit ()

L

Listing 2: Function that calculates the attribute overlap between two tables
using single attributes.

29

cur.execute("select distinct entity, field from frequencies
< order by 1,2;")
rows = cur.fetchall()
TOWS2 = rows
for rl in rows:

for r2 in rows2:

if r1[0] <> r2[0] and r2[0] <> ’’:
insertJoins(r1[0],r2[0],r1[1],r2[1])

Listing 3: Cartesian product using every attribute of every table in the
database.

30

Chapter 4

Evaluation

4.1 Results from iuphar database

From the exploration of the iuphar database we can inform that the database
has 159 tables and 231 references between them. There are 86 out of 159
tables of the type Linking table (54.09%), 43 Foreign Relation type
(26.68%), 22 Root tables (13.84%), 4 Composed PK with FK (2.53%),
and 4 Isolated tables (2.53%). With respect to the references, there are
there 131 out of 231 refereces of the type Part of the key (56.77%), 80 Not
key type (34.5%) and 20 Exact key type (8.73%).

A tree visualization of dependencies between tables is presented in Fig-
ure 4.1. The tree starts from a Root table and the levels represent direct
connections to the upper table. The number of levels of each path is finite
in the iuphar database, because it does not have loops in its connections.
Repetition occurs when a table is referencing more than one table in the
database. There is one table per line. The table type, the reference type and
the number of records of the table is in parenthesis.

The Exact key reference type is one of interest. This type represents the
existence of a hierarchical relationship between the two tables. This connec-
tion is representing a IS-A relationship, a case of specialization. There are

20 of these reference type in the database and can be seen in Figure 4.2

Another case of interest is when there is a single attribute referencing to

31

ligand (Root Table | 8388 records)
| _ iuphar2tocris (Linking Table | Part of the key | 637 records)
| _ ligand_cluster (Linking Table | Exact key | 6112 records)
| _ ligand2meshpharmacology (Composed PK with FK | Part of the key | 0 records)
| _ peptide (Linking Table | Exact key | 2176 records)
| _ precursor2peptide (Linking Table | Part of the key | 902 records)
| _ analogue cluster (Composed PK with FK | Part of the key | 886 records)
|_ ligand2inn (Linking Table | Part of the key | 1982 records)
| _ screen_interaction (Foreign Relation | Not key | 158551 records)
| _ iuphar2abcam (Linking Table | Part of the key | 0 records)
| _ iuphar2enzo (Linking Table | Part of the key | 1 records)
|_ interaction (Foreign Relation | Not key | 16160 records)
| _ interaction_affinity refs (Linking Table | Part of the key | 18332 records)
| _ product (Foreign Relation | Not key | 49 records)
| _ product_refs (Linking Table | Part of the key | 3 records)
|_ peptide_ligand cluster (Linking Table | Exact key | 64 records)
| _ prodrug (Linking Table | Part of the key | 69 records)
| _ cofactor (Foreign Relation | Not key | 94 records)
| _ cofactor_refs (Linking Table | Part of the key | 40 records)
| _ iuphar2agscientific (Linking Table | Part of the key | 1 records)
| _ substrate (Foreign Relation | Not key | 904 records)
| _ substrate_refs (Linking Table | Part of the key | 403 records)
| _ reference2ligand (Linking Table | Part of the key | 3837 records)
| _ iuphar2biotrend (Linking Table | Part of the key | 1 records)
| _ ligand2synonym (Foreign Relation | Not key | 20472 records)
| _ ligand2synonym refs (Linking Table | Part of the key | 176 records)
| _ ligand2subunit (Linking Table | Part of the key | 96 records)
|_ list_ligand (Linking Table | Part of the key | 988 records)
| _ target_ligand same entity (Linking Table | Part of the key | 18 records)
| _ iuphar2sigma (Linking Table | Part of the key | 1 records)
| _ ligand_database_link (Foreign Relation | Not key | 25607 records)
| _ pdb_structure (Foreign Relation | Not key | 697 records)
| _ pdb_structure_refs (Linking Table | Part of the key | 606 records)

Figure 4.1: Example of hierarchy list from the database analysis.

other table. Like in the case of the ligand and peptide tables. peptide
table has its own primary key and one of its attributes is referencing to the
ligand table. From this relationship we can say there is a hierarchical rela-
tionship between the tables. The system is able to identify this relationship,
obtain the data through an automatic query and present it in a hierarchical
way. The system is able to identify all the path of relationships between
table, then analysing the metadata and statistical measures is able to guess
that a hierarchical relationship exists. The hierarchies can be extracted in
both directions from the system, once a hierarchy is identify it is possible to
extract the data from both directions. It can be seen in Figure 4.3.

32

An interesting result from the system is the capability to infer hierarchical
relationships between the tables. For example, when a table is referencing
to two other tables, we can analyse the results from the primary key check-
ing process and suggest that as one of the attributes contains the other,
there may exists a hierarchy. When the primary key checking is near to one,
means that few records will be repeated in the hierarchy, most of the data
values will belong to one class. An example of a three level hierarchy can
be seen in Figure 4.4 where we can see the relationship between the tables
object, receptor_basic and receptor2family. receptor is a specialization of
object and receptor2family is referencing to receptor_basic and family but
when the primary key checking is analyzed the hierarchy seems to be using
the relationship to receptor_basic because less than 2% (58 out of 2912) of
the data values are repeated in the hierarchy.

The results can be exported in JSON-alike format and also in a a JSON
schema !. The JSON schema is defined using the metadata from the database.
The hierarchy, attribute names and types are required. An example is pre-
sented in Figure 4.5. The figure is showing the output of the relation between
the peptide and ligand tables. The query is auto-generated using the meta-
data collected from the database. In this case, the heuristic found an IS-A
relationship leading to the generation of this result.

thttp://json-schema.org

33

(7= I < - B T - |

11

12

13

14

15

16

17

18

19

20

relname
name

accessory_protein
catalytic_receptor
enzyme

gpcr

grac_family_text

grac_functional _characteristics

grac_transduction
introduction

lgic
ligand_cluster
multimer

nhr

other_ic
other_protein

peptide

peptide_ligand_cluster

peptide_ligand_sequence_cluster

receptor_basic
transporter

wgic

frelname reference_type

name

object
object
object
object
family
object
object
family
object
ligand
object
object
object
object
ligand
ligand
ligand
object
object

object

Figure 4.2: List of IS-A relationships

34

text
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact
Exact

Exact

found.

key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key

ligand.ligand_id : 1

ligand.name : flesinoxan
ligand.pubchem sid : 135650267
ligand.radiocactive : False
ligand.old_ligand_id : 2846
ligand.type : Synthetic organic
ligand.approved : False
ligand.approved_source :
ligand.iupac_name : 4-fluoro-N-[2-[4-[(3S)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-8-yl]piperazin-1l-yljethy
1l]benzamide

ligand.comments :
ligand.withdrawn_drug : False
ligand.verified : False
ligand.abbreviation :
ligand.clinical_use :
ligand.mechanism of action :
ligand.absorption_distribution :
ligand.metabolism :
ligand.elimination :
ligand.popn_pharmacokinetics :
ligand.organ_function_impairment :
ligand.emc_url :
ligand.drugs_url :
ligand.ema_url :
ligand.bioactivity_comments :
ligand.labelled : False
ligand.in_gtip : None

ligand2synonym.ligand_id : 1
ligand2synonym.synonym : DU-29,373
ligand2synonym.from_grac : False
ligand2synonym.ligand2synonym id : 26505
ligand2synonym.display : True

ligand2synonym.ligand id : 1
ligand2synonym.synonym : (+)-flesinoxan
ligand2synonym.from grac : False
ligand2synonym.ligand2synonym_id : 21786
ligand2synonym.display : True

ligand.ligand_id : 2
ligand.name : guinpirole

Figure 4.3: Example of the output of a hierarchical relationship between
peptide and ligand tables.

35

object.
object.
object.
object.
object.
object.
object.
object.
object.
object.
object.
object.
object.
object.
object.
object.
object.

object_id :
name :

comments :

only_grac :

in_cgtp :
in_gtip :

receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.
receptor_basic.

last_modified :

structural_i
old_object_id :
annotation_status : 2
only_iuphar :
grac_comments :

no_contributor_list :
abbreviation :
systematic_name :
guaternary_structure_comments
True

False

gtip_comment :

1

5-HT_{1A} receptor

2815-88-17

o_comments :
231e

False

None

None

False

Naone

None

None

Naone

object_id : 1
list_comments :
associated_proteins_comments : None
functional_assay_comments : None
tissue_distribution_comments : None
functions_comments : None
altered_expression_comments : None
expression_pathophysiology_comments
mutations_pathophysiology_comments :
variants_comments : None
*¥enobiotic_expression_comments :
antibody_comments : None
agonists_comments : None
antagonists_comments : None
allosteric_modulators_comments :
activators_comments : None
inhibitors_comments : None
channel_blockers_comments
gating_inhibitors_comments :

None
Naone

Naone

Naone

None
Naone

receptor2family.object_id : 1
receptor2family. family_id : 1
receptor2family.display_order :

object.object_id :
object.name :

Figure 4.4: Example of the output of a hierarchical relationship between

peptide and ligand tables.

2

5-HT_{1B} receptor

36

"http://json-schema.org/draft-84/schema#",
Output of a query”,
Results of the relationship between table A and table B.",

"peptide",
object"”,
{

"peptide.three_letter_seq": {
tring",

P
"properties":
"ligand. 1

de: K of ligand table",

’
"ligand.name"
"ype

"ligand. radi
"type

h
"ligand.old_1i
“type

Figure 4.5: JSON schema definition example.

37

Chapter 5

Conclusion

The objective of finding one or many hierarchical relationships in a rela-
tional database was accomplished using heuristics analysing the metadata of
the database, a graph representation and the data itself. Measures like data
frequencies and attribute overlaps were calculated to provide more informa-
tion and to support the findings of the hierarchical relationships between the
tables.

It is possible with system to identify explicit and implicit relationships
and to extract the hierarchical data from the relational model.

The objective of finding the explicit relationships was accomplished. The
primary key checking process allowed the discovery of, implicit, hierarchi-
cal relationships. A full scan of candidate keys was computed for all the
attributes in the database to provide insights about the database content.
Also it is possible to find relationships created by use that were not included
in the original design of the database.

The extensions implemented like the data frequency and the attribute
overlap measures helped not only to find relationships in the database but
also to explore and analyze the content and structures of the data sources
or repositories. The process can be applied to several databases at the same
time and find relationships among different repositories.

38

5.1 Further work

5.1.1 Big Data implementation

It is possible to extend this implementation for a Big Data environment al-
lowing to analyze databases of gigabytes or terabytes with the same principles
of analyzing its metadata, graph representation and statistical measures.

In the case of a schemaless database the third phase of statistical analysis
will replace the first phase of metadata exploration. The computation of the
frequencies of the data values and its attribute overlap analysis will provide
the necessary insights about relationships between the data structures. Same
results are expected from the analysis of an unstructured data source.

The statistical analysis can make use of a map-reduce implementation.
To process large volumes of data in a distributed way. The data frequency
calculation is a counting function of the key part of a key-value represen-
tation of the data. This process can be applied to each field of a table or
property if the data is in a document format. The data value will be the key
part. Using several reducers the counting task can be distributed and could
process terabytes of data in reasonable time.

Finally the output of this process will deliver kilobytes of data, and the
process is required to run once. It will not require to reprocess the same
amount of data. The metadata with the attribute overlap between two single
attributes from two different tables, makes easy to analyse the potential
connections between the data sources.

5.1.2 Beyond single attributes

The approach in this project considers single attribute comparison. But it
can be extended to consider any number of attributes. The reason is because
all the tables in the iuphar database uses a single attribute as reference to
another table. But it can be the case that more than one attribute is used as
a single reference constraint. One approach is to reduce multiple attributes to
a single one and continue the process as it is defined in the system. Another
approach is to include a list of the attributes and create the code to auto-
generate the queries in a recursive way.

39

5.1.3 Optimization to the process

An optimization of the data frequencies calculation process in the statistical
analysis phase is to make a distinction by the length of the data values and
storing them in different data structures. This allows to create indexes for
the data value column, with text values now its impossible, and speed up the
data processing. Text type attributes are less expected to appear because
they will represent annotations or plain texts, a different kind of analysis
could be performed on this data values like applications of natural language
processing tasks.

The formation of sentences using metadata of the database can be ex-
tended using more than one table in the sentences formation. Sentences
using in this report are limited to one table at the time. The system could
learn about the preferences of the designer presenting more information ac-
cording to selection criteria in the use of the system.

The implementation of the systems included the calculation of data fre-
quency for each attribute. It can be extended a distinct of string and numeric
attributes. This would allow to calculate additional measures for numeric at-
tributes like average, median, min, max, range, percentiles, etc. Additional
evaluation of data distribution comparison can be included in the system
to say if two data distribution are similar to see the similarity between two
numerical variables. Also suggest that two numerical variables are amplified
by an order of magnitude but they behave in a similar way.

40

Appendix A

Basic Metadata Structures in

SQL

— metadata of tables and attributes in the database. PK
and FK are identified.
drop table if exists tempo;
create table tempo as
select c.relfilenode
, c.relname
, a.attname
, col.data_type
, a.attnum
, pk.oid
, pk.conname
, case when pk.conrelid is not null then ’'pk’ else
"7 end as pk
, case when fk.conrelid is not null then ’fk’ else
"7 end as fk
, case when pk.conrelid is not null and fk.conrelid
is not null then ’'link’ else '’
, fk.oid as foid
, fk.conname as fconname
, ft.relname as frelname
, fk.confkey
, fa.attnum as fattnum
, fa.attname as fattname
from pg_class as c¢ inner join pg_attribute as a

end as link

41

on c.relfilenode = a.attrelid

and relkind = ’'r’

and a.attnum > 0

and c.relnamespace = 2200

left join pg_constraint as pk
on c.relfilenode = pk.conrelid
and pk.contype = 'p’

and pk.conrelid = a.attrelid
and a.attnum = any(pk.conkey)
left join pg_constraint as fk

on c.relfilenode = fk.conrelid
and fk.contype = ’f’
and fk.conrelid = a.attrelid

and a.attnum = any(fk.conkey)
left join pg_class as ft
on fk.confrelid = ft.relfilenode
left join information_schema.columns as col
on c.relname = col.table_.name
and a.attname = col.column_name
left join pg_attribute as fa
on fk.confrelid = fa.attrelid
and fa.attnum = any(fk.confkey)
order by relfilenode , a.attnum;

— drop table summary;
drop table if exists summary;
create table summary as
select c.relfilenode

, c.relname

, a.attname

, col.data_type

, a.attnum

, pk.oid

, pk.conname

, case when pk.conrelid is not null then ’pk’

P

end as pk

, case when fk.conrelid is not null then ’'fk’

"7 end as fk

else

else

, case when pk.conrelid is not null and fk.conrelid

is not null then ’'link’ else ’’

42

end as link

, fk.oid as foid
, fk.conname as fconname
, ft.relname as frelname

from pg_class as c¢ inner join pg_attribute as a
on c.relfilenode = a.attrelid
and relkind = ’'r’
and a.attnum > 0
and c.relnamespace = 2200
left join pg_constraint as pk
on c.relfilenode = pk.conrelid
and pk.contype = 'p’

and pk.conrelid = a.attrelid
and a.attnum = any(pk.conkey)
left join pg_constraint as fk
on c.relfilenode = fk.conrelid
and fk.contype = 'f’

and fk.conrelid = a.attrelid
and a.attnum = any(fk.conkey)
left join pg_class as ft

on fk.confrelid = ft.relfilenode
left join information_schema.columns as col
on c.relname = col.table_name
and a.attname = col.column_name
where c.relname not in (’tl1’,’t2’, tempo’, summary’,’
summary_v2 ', ’summary_v3’, ’summary v4’,'table_relations)

order by relfilenode , a.attnum;

—— temporal structure to calculate number of PK, FK and
hubs .
drop table if exists summary_v2;
create table summary v2 as
select relfilenode
, relname
, sum(case when pk = 'pk’ then 1 else 0 end) as
num_pk
, sum(case when fk = 'fk’ then 1 else 0 end) as
num _fk
, sum(case when link = ’link’ then 1 else 0 end) as
num_link
, count(distinct frelname) as num_ftables

43

, count (x) as features
from summary
group by 1,2
order by num_fk, num_pk, num_link, features desc;

— C(Classification of tables in the database according to
their dependences.

drop table if exists summary_v3;
create table summary_v3 as
select relfilenode

, relname

, case when num_fk = 0 and s2.frelname is null then

"Isolated .Table’
when num_pk > 0 and num_fk = 0 then ’Root._

Table’

when num_pk = num_link and num_fk =
num_link and num_pk > 0 then ’Linking.
Table’

when num_pk > num_fk and num_fk = num_link

then ’'Composed PK_with FK’
when num_pk <= num_fk then ’Foreign.
Relation’
else '’ end as table_type
, num_pk
, num_fk
, num_link
, num_ftables
, features
, coalesce(f.n, 0) as num_references
from summary_v2 as s
left join
(select distinct frelname from summary
where frelname is not null) as s2
on s.relname = s2.frelname
left join
(select frelname
, count(distinct relname) as n
from summary
where frelname is not null
group by frelname) as f

44

on s.relname = f.frelname;

— Aggregation of the tables with dependences in order to
calculate the path to the origin tables.
drop table if exists summary_v4;
create table summary_v4 as
select distinct s.relname
, s.frelname

, s3.table_type as referencing_table_type
, sd4.table_type as referenced_table_type
, case when s3.num_link = 1 and s3.num_pk = s3.
num_link then ’IS-A’
when s3.num_pk > s3.num_link and s3.
num_link > 0 then ’Part_of_the_key’
when s3.num_link = 0 then ’Not_key’
when s3.num_link > 1 and s3.num_pk = s3.
num_link then ’Part_of_the_key’
—when s3.num_link > 1 and s8.num_pk = s3.

num_link then ’Part of the full key’
end as reference_type

from summary as s left joinm summary_v3 as s3
on s.relname = s3.relname
left join summary_v3 as s4

on s.frelname = s4.relname
where s.fk = 'fk”’

order by 1,2;

— Query that returns the dependencies between the tables
in

drop table if exists table_relations;

create table table_relations as

with recursive rel(relname, frelname, referenced_table_type
) as (
select distinct relname, frelname,
referenced_table_type
from summary_v4 as r

where referenced_table_type = ’Root_Table’
union all

45

select distinct r.relname, r.frelname, r.
referenced_table_type

from summary_v4 as r, rel

where r.frelname = rel.relname

)

select distinct * from rel limit 1000;

46

Bibliography

[Akoka et al., 1999] Akoka, J., Comyn-Wattiau, I., and Lammari, N. (1999).
Relational database reverse engineering: Elicitation of generalization hi-
erarchies. In Advances in Conceptual Modeling: ER °99 Workshops on
FEvolution and Change in Data Management, Reverse Engineering in In-
formation Systems, and the World Wide Web and Conceptual Modeling,
Paris, France, November 15-18, 1999, Proceedings, pages 173-185.

[Alhajj, 2003] Alhajj, R. (2003). Extracting the extended entity-relationship
model from a legacy relational database. Inf. Syst., 28(6):597-618.

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared
data banks. Communications of the ACM, 13(6):377-387.

[Date, 1981] Date, C. (1981). Referential integrity. In VLDB, volume 81,
pages 2-12.

[Fong, 1997] Fong, J. (1997). Converting relational to object-oriented
databases. SIGMOD Record, 26(1):53-58.

[Henrard and Hainaut, 2001] Henrard, J. and Hainaut, J.-L. (2001). Data
dependency elicitation in database reverse engineering. In Software Main-

tenance and Reengineering, 2001. Fifth European Conference on, pages
11-19. IEEE.

[Karagiannis, 1994] Karagiannis, D., editor (1994). Database and Ezpert
Systems Applications, 5th International Conference, DEXA 94, Athens,
Greece, September 7 - 9, 1994, Proceedings, volume 856 of Lecture Notes
in Computer Science. Springer.

[Lammari et al., 2007] Lammari, N., Comyn-Wattiau, I., and Akoka, J.
(2007). Extracting generalization hierarchies from relational databases: A

47

reverse engineering approach. Data € Knowledge Engineering, 63(2):568—
589.

[Smith and Smith, 1977] Smith, J. M. and Smith, D. C. P. (1977). Database
abstractions: Aggregation and generalization. ACM Trans. Database Syst.,
2(2):105-133.

[Yeh et al., 2008] Yeh, D., Li, Y., and Chu, W. C. (2008). Extracting entity-
relationship diagram from a table-based legacy database. Journal of Sys-
tems and Software, 81(5):764-771.

48

