
Data Science use cases in the
Manufacturing Industry

From theory to practice.

Diego Alejandro Arenas Contreras

This thesis is submitted in partial fulfilment for the
degree of

Doctor of Engineering (EngD)
at the University of St Andrews

February 2022

Data Science use cases in the Manufacturing

Industry

From theory to practice

Diego Alejandro Arenas Contreras

Abstract

One of the main challenges organisations face today is supporting business de-
cisions from the massive volumes of data they are continuously collecting. The
problem for organisations is how to become a data-driven organisation using the
data they collect to generate insights and repeatable solutions connecting informa-
tion needs with usable data products.

Our objectives during the doctorate were to research and implement high quality
technological and methodological solutions following best practices from academia
and industry and, at the same time, build internal capacity for the organisation
from experience.

We implemented a series of data-related projects. The projects can be classified
into two types. There are foundational projects that build infrastructure and pro-
cesses to analyse data and applied data projects. Our methods included practices
from software engineering, data science, and data engineering. We designed and
built data solutions based on the principles of scalability, automation, encapsula-
tion, and abstraction.

We followed the principles mentioned above from the design phases of the projects;
this allowed us to achieve good integration with the current systems and infrastruc-
ture of the organisation. We operationalised the technologies we explored for each
project using a use-case driven approach. Users and stakeholders were involved early
on on the projects, and we maintained excellent and continuous communication with
them.

The foundational projects implemented data architectures rather than imple-
menting a specific ad-hoc solution so that the projects adjusted well to changing
requirements and were generalisable to be reused entirely or components of the so-
lutions in future projects. We used the foundational projects in the applied data
projects.

We deployed an estimation model to quantify the number of technicians needed
to support an on-site project. Using an API to query the model, we used a mi-
croservice architecture exposing the final model to be consumed. We designed and
implemented the analysis of estimating the lifespan of batteries using survival anal-
ysis and spectral clustering techniques. We ranked specific machines from best to
worst performance based on their fuel consumption to optimise resources on project
sites. We designed and implemented a Python custom package to facilitate the ex-
ploration of databases for data science and data engineering projects. We designed
and implemented a microservices architecture to support data streaming analytics.
We made recommendations on using a machine learning framework to track and
monitor machine learning models, wrote guidelines for best practices, and delivered
internal tutorials about the use and benefits of these kinds of solutions. We imple-

2

Data Science use cases in the Manufacturing Industry

mented a data-driven architecture to support the analysis of telemetry data from
multiple data sources. We implemented an alarm system on top of the solution
using the analytical database of the project. Finally, we designed and implemented
a custom Python package to handle repeatable data engineering tasks for the data
engineering team.

Data science and data engineering are new and essential roles in companies that
aim to become data-driven organisations. We believe that using software engineering
and software development techniques contributes significantly to this organisational
change and accelerates internal innovation using data.

We promptly provided data and information to the stakeholders to support their
information needs and decision-making processes.

Chapter 0 Diego Alejandro Arenas Contreras 3

Dedication

To my parents Maŕıa Eliana and Raúl.

4

Declarations

Candidate’s declaration

I, Diego Alejandro Arenas Contreras, do hereby certify that this thesis, submitted for
the degree of EngD, which is approximately 49,000 words in length, has been written
by me, and that it is the record of work carried out by me, or principally by myself
in collaboration with others as acknowledged, and that it has not been submitted
in any previous application for any degree. I confirm that any appendices included
in my thesis contain only material permitted by the ”Assessment of Postgraduate
Research Students” policy.

I was admitted as a research student at the University of St Andrews in October
2016.

I received funding from an organisation or institution and have acknowledged
the funder(s) in the full text of my thesis.

Date Signature of candidate

5

Data Science use cases in the Manufacturing Industry

Supervisor’s declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of EngD in the University of St Andrews and
that the candidate is qualified to submit this thesis in application for that degree. I
confirm that any appendices included in the thesis contain only material permitted
by the ’Assessment of Postgraduate Research Students’ policy.

Date Signature of supervisor

6 Chapter 0 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Permission for publication

In submitting this thesis to the University of St Andrews we understand that we
are giving permission for it to be made available for use in accordance with the
regulations of the University Library for the time being in force, subject to any
copyright vested in the work not being affected thereby. We also understand, unless
exempt by an award of an embargo as requested below, that the title and the abstract
will be published, and that a copy of the work may be made and supplied to any
bona fide library or research worker, that this thesis will be electronically accessible
for personal or research use and that the library has the right to migrate this thesis
into new electronic forms as required to ensure continued access to the thesis. I,
Diego Alejandro Arenas Contreras, confirm that my thesis does not contain any
third-party material that requires copyright clearance. The following is an agreed
request by candidate and supervisor regarding the publication of this thesis:

Chapter 0 Diego Alejandro Arenas Contreras 7

Data Science use cases in the Manufacturing Industry

Printed copy

No embargo on print copy.

Electronic copy

No embargo on electronic copy.

Date Signature of candidate

Date Signature of supervisor

8 Chapter 0 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Underpinning Research Data or Digital Outputs

Candidate’s declaration

I, Diego Alejandro Arenas Contreras, hereby certify that no requirements to deposit
original research data or digital outputs apply to this thesis and that, where appro-
priate, secondary data used have been referenced in the full text of my thesis.

Date Signature of candidate

Chapter 0 Diego Alejandro Arenas Contreras 9

General acknowledgements

Firstly, I would like to thank my academic supervisor, Dr Simon Dobson, for his
endless and continuous academic and personal support during the EngD. For his
invaluable guidance through the process of researching and applying science at the
same time.

I would like to thank my industrial supervisor Elizabeth Hollinger for her guid-
ance and facilitation during the projects presented in this thesis. Also, to Steven
Faull, my first industrial supervisor, for his support during my first year at Aggreko.

To my colleagues at Aggreko, Raymond Callahan, Collin Parry, John Stewart,
Soner Candan, and Lyndsey McKirdy, with whom I had the pleasure of working on
several data-related projects and collaborating personally and through them to all
my colleagues at Aggreko that it would be difficult to name them all.

To my friends and colleagues Simon C. Smith, Felipe Espic, Lissette Áviles,
Pablo Escárate, Paulina Bravo, Pamela Villamar, and Alejandro Gutierrez for our
endless conversations, support, and their friendship in the last five years.

Finally, last but not least, to my extended family, for providing their support
during my studies abroad.

Funding

This work was supported by Aggreko PLC.
This work was supported by The Datalab in Scotland, REG-17465.

10

Contents

1 Introduction 17

1.1 Structure . 20

1.2 Side projects . 22

1.3 The organisation . 23

I Foundational Projects 24

2 Automated Exploratory Data Analysis 25

2.1 Introduction . 25

2.2 Background . 26

2.3 Related Work . 27

2.3.1 Data Exploration in Data Mining Methodologies 27

2.4 Design . 28

2.4.1 Assumptions . 28

2.4.2 Exploratory Data Analysis Tasks 28

2.4.3 SQL code generation . 29

2.4.4 Data Governance and Data Quality 30

2.4.5 Candidate Key Search . 30

2.4.6 Performance . 33

2.4.7 Data Discovery . 34

2.5 Evaluation . 34

2.5.1 Support . 35

2.6 Conclusions . 35

2.6.1 Future work . 35

3 A Streaming Analytics Architecture 37

3.1 Introduction . 37

3.2 Problem Statement . 38

3.3 Background . 39

3.4 Design . 40

3.4.1 The data . 43

3.4.2 Architecture set up . 43

3.4.3 Components of the Architecture 44

3.4.4 Connecting the architecture 47

3.5 Results . 47

3.6 Evaluation . 48

11

Data Science use cases in the Manufacturing Industry

4 Machine Learning models governance 49
4.1 Introduction . 49

4.1.1 Benefits of ML Governance 50
4.1.2 Contributions . 50
4.1.3 Structure of the project . 51
4.1.4 Terms, Definitions, and Acronyms 51

4.2 Problem Statement . 52
4.3 Background . 53

4.3.1 Challenges in ML model management 54
4.4 Literature Review . 54
4.5 Technology Review . 56

4.5.1 MLFlow . 57
4.5.2 Azure Machine Learning (AML) 58
4.5.3 Tensorflow Extended (TFX) 58
4.5.4 Other platforms . 59
4.5.5 Interpretability . 59
4.5.6 Coding Guidelines . 60
4.5.7 DataOps . 64

4.6 Evaluation . 64
4.6.1 Security . 65
4.6.2 Cost . 65
4.6.3 Recommendation . 65

5 Analytics repository for telemetry data from IoT projects 68
5.1 Background . 68

5.1.1 Data Silos . 69
5.1.2 Description of the Problem . 69
5.1.3 Proactive and Predictive Alarms 70

5.2 Problem Statement . 71
5.3 Architecture Design . 71

5.3.1 Architecture and components 72
5.4 Benefits of a single data repository 75
5.5 Data Model Design . 75

5.5.1 The data . 76
5.5.2 The flow of the data . 77
5.5.3 Reverse Engineering . 77
5.5.4 Analysis of the data source . 78

5.6 Implementation . 78
5.6.1 Data Engineering . 79
5.6.2 Data Science . 80

5.7 Deployment . 85
5.8 Discussion . 85

5.8.1 Further analysis . 86

6 Aggreko Data Engineering Library 87
6.1 Introduction . 87
6.2 Background . 88

6.2.1 A brief history of the information systems 88
6.3 Description of the Problem . 89

12 Chapter 0 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

6.3.1 Benefits of a custom Python library 90
6.4 Design . 90

6.4.1 Analysis of the notebooks . 91
6.4.2 Team coordination . 91
6.4.3 Domain-Driven Design . 92
6.4.4 Code structure . 93

6.5 Implementation . 94
6.5.1 Testing . 96
6.5.2 Deployment . 96

6.6 Discussion . 97

II Applied Data Projects 98

7 Manning Optimisation 99
7.1 Background . 99

7.1.1 The current model . 100
7.1.2 The Regression Models . 100
7.1.3 Benefits of an estimation model for manning optimisation . . . 102

7.2 Problem Statement . 102
7.3 Planning . 102

7.3.1 Methodology . 103
7.4 Design . 104

7.4.1 Software Architecture . 104
7.4.2 Data . 107
7.4.3 API . 107

7.5 Implementation . 108
7.5.1 Deployment . 109

7.6 Evaluation . 109
7.7 Phase 2 . 111

7.7.1 Planning . 111
7.7.2 Modelling . 113

7.8 Conclusions . 115
7.9 Further development . 115

8 External Fuel Tank Battery Analysis 117
8.1 Introduction . 117
8.2 Background . 117
8.3 Problem Statement . 118
8.4 Methodology . 118

8.4.1 Project Plan . 119
8.4.2 Data Exploration . 120
8.4.3 The data . 121

8.5 Data Analysis . 122
8.5.1 Survival Analysis . 123
8.5.2 Spectral Clustering . 124

8.6 Conclusion . 127
8.6.1 Further analysis . 127

Chapter 0 Diego Alejandro Arenas Contreras 13

Data Science use cases in the Manufacturing Industry

9 Fuel consumption rate 128
9.1 Introduction . 128
9.2 Methodology . 129

9.2.1 Guidelines . 129
9.3 Experimental questions . 131

9.3.1 Filter differential pressure . 132
9.3.2 Impact of low-quality oil . 132
9.3.3 Impact of fuel quality . 133
9.3.4 Vibration measurement . 133
9.3.5 Determine better or worst performing assets 133
9.3.6 Sensors added value . 133

9.4 Implementation . 134
9.4.1 Data Exploration . 134
9.4.2 Data preprocessing . 135
9.4.3 Data Analysis . 135

9.5 Results . 137
9.6 Further development . 138

10 Conclusions 139

A Appendix: Survey questions 143

B Appendix: Infrastructure configuration 145
B.1 Docker . 145
B.2 Kafka Server . 145

C Appendix: Other contributions 147

14 Chapter 0 Diego Alejandro Arenas Contreras

Acronyms

AML Azure Machine Learning. 52, 57, 58

CD/CI Continuous Development & Continuous Integration. 54

EngD Engineering Doctorate. 22, 139, 147

IaaS Infrastructure as a Service. 42, 43

IoT Internet of Things. 20, 68

ML Machine Learning. 49, 54, 57

ONNX Open Neural Network Exchange Format. 57

PaaS Platform as a Service. 42, 43

PFA Portable Format Analytics. 57

PMML Predictive Model Markup Language. 57

RL Reinforcement Learning. 55, 63

SaaS Software as a Service. 42, 43

SCADA Supervisory Control And Data Acquisition. 69

SD Software Development. 54

XAI Explainable Artificial Intelligence. 56

15

Glossary

Data Analyst A person with knowledge about data manipulation for business pro-
cesses. Often creating reports for managers. They often have skills of the SQL
language. They use to work mostly with structured data.. 26

Data Engineer A person working with data transformations and able to integrate
and combine data sources. Creation of data processes or data pipelines for the
organisation with focus on the efficiency of the data processes.. 26

Data Lake A central data repository that stores data source in original format that
allows data transformations and the combination of data sets from multiple
sources to present a unified version of the data.. 39

Data Scientist A person working on data analysis with enough knowledge in
statistics, maths and data modelling, able to use advanced algorithms and
interpret the results providing insights from the advanced data analysis. They
are able to work with structured, semi-structured, and unstructured data.
They are able to design and process massive volumes of data for their analy-
sis.. 26

Power Solutions A line of business of the company that has long term projects
with customers.. 132

Rental Solutions A line of business of the company that deals with short-term
projects.. 99

16

Chapter 1

Introduction

Your technology stack is already obsolete. Today Data Technologies offer a myriad of
options to drive data analytics projects. There is a constant evolution in the types
of data processing technologies to solve the same problems. Innovation happens
at a quick pace. It is necessary to continue experimenting and testing the new
technologies available in the market.

This thesis document presents a series of data-related projects executed during
the author’s engineering doctorate programme at Aggreko. The common denomi-
nator of the information needs that triggered the data science and data engineering
projects described in this document is the aim to become a data-driven organisation.
It is believed that the work presented in this thesis has contributed to achieving this
status.

This document presents the following specific contributions:

• The deployment of a model to estimate the number of technicians required to
support unplanned failures of machines in a given project site.

• The analysis of the lifespan of batteries of the sensor attached to external fuel
tanks.

• The estimation of fuel consumption to rank best and worst-performing assets
regarding their fuel consumption under different workloads.

There are also general contributions with tools and processes that were designed
and built to complete the specific contributions. The general contributions are:

• An open-source Python library to automate the exploration of databases.

• A streaming analytics architecture.

• A machine learning governance framework recommendation to track the de-
velopment and deployment of machine learning models.

• The design and implementation of an analytics data repository for telemetry
data.

• An internal Python library for data engineering tasks.

17

Data Science use cases in the Manufacturing Industry

The design and implementation of the data science and data engineering projects
presented in this thesis follow some basic principles from software engineering. These
principles may sound like common sense, but they represent an invaluable contribu-
tion in the history of computer science, software development, and now becoming
part to the new fields of data science and data engineering. The software engineering
practices contribute significantly to the success of the individual projects presented
in this document.

What is the path to becoming a data-driven organisation? Many companies fol-
low the example of big tech companies like Facebook, Amazon, Google or LinkedIn,
incorporating their data tools and practices. But we need to recognise that most
of the companies in the world will not necessarily handle the same volumes of data
as the big tech companies. This is not considered when selecting the technology
stack or the toolset used by a team to develop products. Not only in volume but
the number of concurrent users.

It can be argued that a data-driven organisation uses facts from data to support
its decisions. The technological solutions implemented in a data-driven organisation
must provide timely access to the information from data. Considering the access to
information premise in mind when designing technological solutions can significantly
impact the results and contribution of the delivered projects. In general, it should
be avoided to implement technologies just because they seem helpful without a use
case to evaluate the implementations. But first, it is necessary to find the right
question and then find the right technologies to solve it.

Note on the language used in this document. The work presented in this EngD
thesis was completed by the author, but in several paragraphs the author will use
the terms “we” and “ours” to refer to the tasks as a team effort even when the tasks
were completed by the author unless is stated differently. This voice felt natural
when describing the projects involving the supervision by Prof. Simon Dobson, the
collaboration with data professional colleagues and the involvement of stakeholders.

Challenges with technology stacks

A challenge that companies face when choosing their technology stack is evaluating
the benefits and costs of adding a new technology compared with their current
technology stack. This balance is often a constraint for the data teams when deciding
on the use of new technologies. Sometimes technologies are appealing to use, but it is
necessary to evaluate the impact in the long term and match it with the organisation
data strategy. Does the new tool contribute to achieving the strategic goals of the
organisation efficiently? How the new technology can amplify the work of the data
analysts, or how it can optimise costs and resources used to add value to the business
units.

For example, the use of multiple programming languages within a team could
be an advantage because it grants flexibility to solve problems based on the skills of
the analysts, but this also becomes an issue when we think about maintaining the
solutions. Having multiple programming languages can be a bottleneck to further
developing new solutions or maintaining existing ones. Standardising the analyst’s
development tools is a productivity gain over time.

18 Chapter 1 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

The current technology stack of the organisation1 tools and processes are the
starting point for any of the evaluation of technologies for the EngD projects. There
was special consideration to not creating technical debt2 [52] nor the intention to
create isolated solutions that are separated from the organisation’s data processes.

The approach

The solution to finding the right technologies for a particular data problem is to
establish a process rather than assessing tools and frameworks individually. The
suggested process uses software engineering practices applied to data science as
principles when designing and planning solutions to data problems.

The first principle of software engineering is to think in terms of Scalability
[47]. Scalability is one of the principles we followed across the different projects
presented in this thesis. An idea behind each of the implemented projects was that
they would be able to scale out their current demand for processing power or data
storage. Sometimes it is necessary to refactor the solution to make it scalable when
the throughput requirements increase. Scalability matters because data teams must
prepare organisations for the increasing volumes of data they are collecting. The
technological solution developed today is desired to handle a growing amount of
data in five or ten years.

Another pattern that emerges from studying data-driven organisations and their
leaders is identifying and automating repeatable processes. Automating tasks can
free up resources in terms of time, knowledge and costs. The time spent automating
a solution can have a considerable return on investment. This automation principle
is applied whenever possible in the EngD projects presented in this document, as
seen in the following chapters. Automating repeatable work frees time to develop
new projects and ensures automated processes include quality testing.

Along with the principle of Scalability, it is necessary to consider the extensibility
principle. Extending the solution should be easy enough for the data team to extend
the project after the deployment is completed. The analyst should consider the
extensibility of the solution from the design phase.

Highly interrelated with the scalability and extensibility principle, there are the
principles of abstraction and encapsulation. These principles are transversal to the
designs and implementations found in this thesis document. They naturally ap-
peared in the data science and data engineering designs formulated in the multiple
projects built in the last four years.

The concepts of abstraction and encapsulation are not new to software engi-
neering. On the contrary, software development practices have been advocating for
them for many decades as best practices to follow. And now, these best software
engineering practices can be part of the new role of data scientists [58]. There is a
transition from data insights to data products, making necessary the use of software
development techniques to be able to deliver the value from the insights with quality
and sustainability [43].

1The technology stack includes some constraints on the use of key technologies like Microsoft
Azure as the default cloud provider, Databricks as the central platform to process data, and using
Python as the standard language for data analysis.

2Technical debt is understood as increasing the cost and effort of future changes in the software
due to poor design in the early stages of projects.

Chapter 1 Diego Alejandro Arenas Contreras 19

Data Science use cases in the Manufacturing Industry

Complexity in software should be abstracted and encapsulated into functions
and modules to test them and ensure their quality and then used in the code.

The progress in big data analytics is given by the capacity of the new solutions
to encapsulate and abstract complex processes for the analyst to make use of them
without the need to implement the complexity themselves. A good example is the
abstraction and encapsulation of parallel and distributed processing on clusters.
This technology has been available for many years to programmers, but they had
to implement it from scratch. When a solution abstracts and encapsulates the
complexity of distributed computing processing, it gets private companies’ interest
to leverage advanced ways to process big data volumes.

The fundamental principles followed on each one of the projects presented in this
document are: scalability, automation, encapsulation, and abstraction.

A secondary set of principles were followed in the projects, such as integration
with existing systems—the operationalisation of the solutions and being use-case
driven instead of testing technologies for the sake of testing them.

Integration with existing systems is essential. Designing big data architectures
can bring a lot of disruptive innovation to the organisation, but this will not be
sustainable if every new system brings disruptive changes to the ecosystem of tools
that the organisation currently uses. Any new technological solution should consider
the current systems and evaluate the best ways to integrate with the existing solution
within the organisation.

Any new technological implementation should be tested along with a use case.
The implementation should have a clear, tangible goal and evidence of accomplish-
ment. The implementation of projects should be use case driven.

1.1 Structure

This thesis document is divided into two parts. The first part contains five, and
the second part has three chapters. Each chapter presents the design and imple-
mentation of a project. The projects presented in Part I are considered foundation
projects. They built capacity within the organisation to implement the projects pre-
sented in Part II. The projects in Part II describe applied projects with narrowed
objectives and often make use of the projects presented in Part I.

The EngD projects are highly related. The foundational projects of Part I made
it possible to work on the applied EngD projects of Part II of this thesis. Data
exploration activities played a significant role across the different projects.

Part I presents an automated data exploration tool, a streaming analytics data
architecture, a machine learning governance framework selection, an analytics repos-
itory for Internet of Things (IoT) projects, and the implementation of a data engi-
neering library.

Chapter 2 presents an automated tool to explore the content of databases. This
tool is used extensively in other projects presented in this thesis. The tool helped
with the data exploration of databases that there was no prior knowledge about
their content, it was used to find relationships between tables in databases, and
a feature implemented in the tool was used to find the candidate primary keys of

20 Chapter 1 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

two hundred and twenty tables that otherwise would have required many hours of
manual labour.

The extensive use of the automated tool for exploratory analysis across the dif-
ferent projects presented in this document highlighted the relevance of the data
exploration phase in data science projects. How quick an organisation can be aware
of its data? This question is relevant because it represents an advantage over com-
petitors and leads to improved processes to have quick responses for ad-hoc analysis.
The analytical question sometimes is redefined based on the data available, and the
data available can only be determined by the exploratory data analysis.

The tool was designed to abstract the repeatable tasks that analysts have to
perform to explore the content of a database. It encapsulates different queries into
functions, and it generates the necessary SQL code to query the database.

The tool is based on the code from the MSc dissertation project [54] that auto-
matically searches for relationships between relational tables.

In Chapter 3 presents a streaming data processing architecture. Using the prin-
ciples of scalability and extensibility to design a solution able to scale out depending
on the demand. This was an assessment of the organisation’s big data capabilities
to respond to increasing demand for information needs.

The design was modularised, implementing an event-driven data architecture.
This was the first EngD project, and the software engineering principles mentioned
above can be seen applied to the design and implementation of this project.

In Chapter 4 multiple frameworks for machine learning governance are evalu-
ated. A recommendation was made based on criteria established at the beginning of
the EngD project. A set of recommendations were made as best practices for data
science and machine learning projects. The use of interpretable machine learning in
the data science projects was recommended for the analysts to incorporate it into
the machine learning development process.

In Chapter 5 an analytical database is implemented to store and analyse teleme-
try data from remote devices deployed around the world. Data transformation
processes were built to ingest the data, and proactive alarms were developed using
the data from the database. The components of the architecture were modularised
using the design principles of abstraction and encapsulation.

In Chapter 6 presents the design and implementation of a data engineering li-
brary. Encapsulating repeatable data transformation tasks and wrapping them into
functions in a custom Python library. We created modules for the different com-
ponents. Each module contained scripts that abstracted the complexity of data
transformation tools. We designed the library to be extendable.

We created the processes to deploy the library to clusters of data processing. We
created guidelines and recommendations to develop and extend the library. We held
hands-on sessions with the data engineering team to work with Git repositories and
collaborative work.

In Part II, we present the deployment of a forecast model to estimate the num-
ber of experts necessary to provide support to run a project site, an analysis of the

Chapter 1 Diego Alejandro Arenas Contreras 21

Data Science use cases in the Manufacturing Industry

lifespan of batteries attached to sensors, and a model to rank generators based on
their fuel consumption rates.

In Chapter 7 we present a data science project where we transferred a solution
from spreadsheets to a three-tier architecture solution in the cloud. We deployed
an application to estimate the number of experts and crew members to run and
maintain the machine deployed to a project site given the initial conditions of the
project and its location.

We explored and analysed the data sources to update the forecasting model.

In Chapter 8 a data science project to understand the lifespan of batteries at-
tached to fuel level sensors is described. Using analysis such as survival analysis
and spectral clustering to provide information to the stakeholders to make decisions
on the maintenance of the machines.

We explored the data source and found the tables that contained the data we
needed to implement the analysis.

In Chapter 9 we explained the process to prioritise question to design exper-
iments. We presented a framework to design and run experimental designs. We
advised for the design of experiments and wrote guidelines for other team members
to start using statistical analysis to answer questions for which there is not enough
data.

We selected six analytical questions by process of voting and elimination. We
prioritised the implementation of the projects. We implemented a ranking of the
generators present in a project site based on their fuel consumption performance.
This ranking will help to prioritise the order of the generators that will be connected
to the grid under variable demand using the most efficient generators.

Finally, Chapter 10 presents the conclusions.

1.2 Side projects

I had the privilege to work on interesting side projects during my Engineering Doc-
torate (EngD). The side projects were a way to continue with my learning path
and professional and personal self-development [91], [84]. I often used the gained
knowledge from these side projects in the projects presented in the chapters of this
thesis.

These side projects greatly enriched the potential contributions of each EngD
project. The experience acquired by joining teams and development groups provided
the experience to tackle and lead some of the data science and data engineering
projects of the EngD.

In 2018, two position papers were written by Diego on Data for Good. The
Case for Data For Good3 and Scalable Digital Volunteering: A Data for Social
Good Marketplace4 presenting the need to scale the volunteering work using digital

3Downloadable at https://darenasc.github.io/files/TheCaseForDataForGood.pdf (accessed 25
October 2021).

4Downloadable at https://darenasc.github.io/files/ScalableDigitalVolunteering.pdf (accessed 25
October 2021).

22 Chapter 1 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

and collaborative platforms. The other paper explains the design of a platform for
collaboration on data science projects for the common good.

The design of that platform data science platform for Data for Good led to the
collaboration with a working group about that was about to start working on a
blueprint for a Data Safe Haven. The overlapping of Data Safe Haven ideas and
a data platform for processing and storing data for data science projects led me
to join the group. Diego was invited as a Visiting Researcher at the Alan Turing
Institute, we he contributed to the work published on this paper on Design choices
for productive, secure, data-intensive research at scale in the cloud [86].

Around the same time, Diego joined the development group of a new and promis-
ing machine learning library written in the Julia5 programming language. He was
one of the first maintainers of the library MLJ: A Julia package for composable ma-
chine learning [93]. The experience from the work on this open-source project was
key for the designs of the libraries presented in Chapters 2 and 6.

1.3 The organisation

Aggreko is a manufacturing company. It was funded in 1962 with headquarters in
Glasgow, Scotland. Aggreko has a presence around the world. We will refer to
Aggreko as the company or the organisation in the next chapters. The company
manufactures equipment for power generation such as generators, loadbanks, trans-
formers, and equipment for energy distribution—also heating and chilling equip-
ment, dehumidifiers, and boilers.

The equipment is available for hire. The hiring could last for a few days or
could be multi-year projects that require electric power generation. The equipment
is shipped almost anywhere on the planet, and multiple industries use them.

The hired equipment is remotely monitored. There are many sensors attached
to the machines that are deployed to the project sites worldwide. The data collected
from these sensors are the raw material for most of the projects presented in this
thesis.

The starting point of the Engineering Doctorate journey was a welcoming In-
formation Technology team that serves the company’s information needs. All the
projects presented in this thesis were implemented as part of the team of Advanced
Analytics at Aggreko. They were related to telemetry data from the generators and
equipment or customers of the company. The projects are a selection of data science
and data engineering projects.

In the beginning, there was a stable on-premise data warehouse system and
scheduled data transformation processes to transfer data from the operational sys-
tems to the data warehouse. The organisation was taking the first steps towards a
data-driven company. Five years later, we can see the great progress that a fantastic
group of people have made. It is on the way to a promising future that I feel proud
to have contributed to.

5Official website of the Julia programming language, https://julialang.org (accessed 25 October
2021).

Chapter 1 Diego Alejandro Arenas Contreras 23

Part I

Foundational Projects

24

Chapter 2

Automated Exploratory Data
Analysis

Summary

An automated data profiling tool is presented in this chapter that explores the con-
tent of databases and creates a data catalogue containing the data source’s metadata.
Another contribution of this work is an algorithm to find candidate primary keys
from tables in O(nk) where n is the total number of columns in the table, and k is
the number of columns in the primary key.

2.1 Introduction

Companies often have many operational information systems, collecting and storing
data for multiple purposes. How can users make sense of all the data available
at a company level? In principle, the answer is straightforward: given access to
the schemata for the databases, users can formulate queries against multiple data
sources: this is, after all, the original promise of relational databases. In reality,
however, schemata are often nor available across the entire organisation (or indeed
at all) simply because the data sources grow too fast, or change too rapidly, to
be documented. In many ways this is a triumph: it is now easy to store huge data
volumes, and so organisations do so – often without any idea of the purpose to which
the data may later be put. We see this tendency growing very strongly alongside the
“Internet of Things”, with companies retaining data that they believe (or hope) that
it will one day be valuable. If several groups have this idea simultaneously, it does
not take long before the proliferation of undocumented databases can overwhelm
the capabilities of analysts. This is a shame, as it frustrates a company’s ability to
extract value from its data and reduces the return on data investment.

An open-source tool called Automated Exploratory Data Analysis (AEDA)1 was
developed that can perform schema extract at data-science scales by finding candi-
date keys in sets of tables. The process is fully automated and database agnostic,
based on metadata collection from a target database.

The AEDA library was developed in Python and was presented at the PyData

1GitHub repository of the AEDA tool, https://github.com/darenasc/aeda (accessed 18 August
2022).

25

Data Science use cases in the Manufacturing Industry

London Meetup2, PyData Edinburgh Meetup3, and at PyData Global in 20214.

This tool can be useful for companies that rely on external data sources. Most of
the EngD projects in this thesis used a telemetry database on MySQL designed by a
third party. The organisation had access to this external database but no knowledge
of its contents. AEDA proved helpful in identifying the relevant tables for different
sensors and processes.

Three contributions are presented in this chapter: a standard automated process
to explore databases; a brute force algorithm to find candidate keys in tables; aug-
mented with a process for data discovery of similar information in multiple systems.

The origin of the algorithm to find candidate keys in tables was presented as
a challenge by the company’s Data Engineering Lead (RC) to the author of this
thesis. At the time, there was an Oracle database with over 120 tables and cryptic
table and column names using groups of chars without human readable meaning.
The database did not have primary keys on the tables, and they were needed to
implement a Change Data Capture strategy to load them into the centralised data
repository of the organisation. The challenge was presented on a Friday afternoon
during a social activity with the IT team of the company, and the algorithm was
developed over that weekend. It was tested the following Monday with good results.

The rest of this chapter is structured as follows. We describe the commercial
context for our work in section 2.2, and survey related work in section 2.3. Our
design is presented in section 2.4 and evaluated against a real commercial scenario
in section 2.5. Finally, section 2.6 presents our conclusions and future directions.

2.2 Background

In this chapter we will use the term Analyst to refer to a Data Analyst, Data Scientist
or Data Engineer. The Data Analysts often are part of business units creating
reports for managers using SQL language to query databases and data warehouses.
The Data Scientists have background and knowledge of maths and statistics. They
can model the data to create predictive models and can describe datasets using
statistics. The Data Engineers create the data transformations to provide data
to the organisation. They care for efficient data processes. They create the data
transformation tasks to move data from the data sources of operational systems to
centralised data repositories where data scientists and data analysts can access the
data.

The databases used in companies on industrial environments can easily contain
hundreds of tables per system. This represents a challenge to any experienced or
new analyst working on an analytics problem.

2Video of the lightning talk: Automated Exploratory Data Analysis on Databases at the 58th Py-
Data London Meetup on September 3, 2019, https://www.youtube.com/watch?v=vvvBWQLFtok
(accessed 18 August 2022).

3Event description of talk: PyData Edinburgh: Automated Exploratory Data Analysis
of Databases on November 4, 2021, https://opentechcalendar.co.uk/event/11493-automated-
exploratory-data-analysis-of-databases, (accessed 18 August 2022).

4Video of the lightning talk: Automating the Exploration of Databases
for Data Science with AEDA at PyData Global on October 30, 2021,
https://www.youtube.com/watch?v=PsCKG8EZIfw&t=3314s (accessed 18 August 2022).

26 Chapter 2 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

The ever-increasing number of data sources available makes two problems par-
ticularly difficult due the amount of queryable data. The first problem is to make
sense of the data in an environment of information overload, and the second problem
is searching related information regarding a specific piece of information that is of
interest: the classic “searching for a needle in a haystack”.

Database vendors will often offer good usage statistics about the data stored in
their database engines, but will lack of information regarding other systems. This
becomes a problem for a company with systems using multiple database engines.
There is a lack of generalisation in the problem of providing summarised descriptive
statistics about the data.

Companies launch data governance and data management initiatives to take con-
trol of the large amounts of data available and to make it available to the stakeholders
involved. Data quality initiatives are also an important part of the assessment [24]
in these practices.

It is necessary to know how the data in different systems relate to each other
because it all belongs to the same company. And a feature that not many data
tools offers is how data from external sources relates with the data within the com-
pany. Both challenges are met with the profiling process of data exploration and its
byproducts.

The processes of Change Data Capture (CDC) [35] and Extract-Transform-Load
(ETL) [36] are also affected by the knowledge the analyst has of the datasets. In
order to ingest data from one system to another, the analysts require a level of
understanding of the data.

A tool that performs reverse engineering on databases [20], [8] and generates
SQL queries to extract descriptive statistics from the data in a given database is
presented in this chapter. The aim of the tool is to minimise the time an analyst
spend querying, a priori unknown, databases in order to understanding its content.

2.3 Related Work

Exploratory Data Analysis [3] is a central activity in any data related process. It is
a series of steps the analyst needs to perform in order the understand the data.

The exploration of database tables, is often performed using the ANSI SQL
Standard [9] or simply the SQL language. The analyst will perform a series of SQL
queries to aggregate data and compute descriptive statistics.

A data professional will consume most of the time preparing the data, under-
standing the format, visually inspecting the variables and ranges of the numerical
data [88] before performing any analysis. There is room for automation as most of
the descriptive statistics tasks are repeatable [30], [3].

There is research around data discovery in big data sets [57] and finding related
tables [44]. Exploratory systems has been suggested but mainly for data visualiza-
tion [55], [75]. We propose a common approach for structured data using a direct
queryable metadata database to find relationships among data.

2.3.1 Data Exploration in Data Mining Methodologies

The data exploration phase is common to the most popular and used data mining
methodologies and frameworks such as KDD [13] CRISP-DM [15], [21], [31] and

Chapter 2 Diego Alejandro Arenas Contreras 27

Data Science use cases in the Manufacturing Industry

SEMMA.
KDD stands for Knowledge Discovery in Databases. The first three phases in

the KDD process are data selection, pre processing and data transformation. A
requirement for for this phases is certain familiarity with the data. A common
practice to gain familiarity with the data is for the analyst to start querying the
database.

CRISP-DM stands for CRoss-Industry Standard Process for Data Mining. Ini-
tially developed by a group of companies as part of a European Union project, it
provided guidelines to work with data mining at industrial level. The second and
third of the six phases of CRISP-DM: Business Understanding, Data Understand-
ing, Data Preparation, Modeling, Evaluation, Deployment involves data exploratory
work.

SEMMA stands for Sample, Explore, Modify, Model, Assess. It was developed
by SAS Institute and the Explore phase is relevant because allow to modify and
model the data.

Data exploration, data discovery is at the core of the analyst tasks and we present
a way to automate these tasks.

2.4 Design

Can we design a tool that helps the analyst with repetitive tasks at the same time
that provide insightful information about data quality and data distributions of, a
priori, unknown data sources?

There are many potential applications of the profiling tool presented in this
paper, we will present two use cases and list the rest. The first use case, is the
automation of the exploratory data analysis (EDA). The second use case is a sound
approach to identify candidate keys on tables when no schema or information is
provided.

The processing of the queries for rapid EDA are pushed to the source RDBMS.
The processing of candidate keys searches, use an heuristic explained in Section

2.4.5 that uses local resources for initial fast computations and remote resources for
validation.

2.4.1 Assumptions

Assumption 1. The server hosting the source database is capable of processing
SQL queries against the source database.

2.4.2 Exploratory Data Analysis Tasks

When an analyst is exposed to a new database without any prior knowledge about
its content, the analyst will query the tables and datasets in order to learn and
extract knowledge for the analytics purpose.

We have defined a series tasks that any analyst would perform in an exploratory
data analysis. We numbered the tasks to reference them later. The analyst would
like to know:

T0 the server name or server address, table catalogue, table schema, table names,
column names, ordinal position of the columns, and column types.

28 Chapter 2 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

T1 number of tables in the database.

T2 number of rows per table.

T3 number of columns per table.

T4 number of unique values per column.

T5 number of null values per column.

T6 frequency number per data value per column.

T7 timewise aggregation of the data.

T8 univariate summary statistics for all the numeric data types.

The data collection in T0 task enables the computation of the rest of the tasks.

T1, T2, and T3 allow the analyst to estimate the size of the project in terms
of the volumes of data. The results from T2 help prioritising the processing of the
rest of tasks starting with the less populated tables and, optionally, distribute the
processing of the bigger tables.

The data types from T0 trigger further explorations based on the data types.
There are three main types a) discrete types, b) continuous types, and c) time types.
We want to compute T6 for a), T8 for b) and T7 for c). For now, open text types
are out of the scope of this tool.

The results from T4 is compared with a maximum unique values threshold, if
the number of unique values is less than the threshold it will trigger the T6 task for
those columns.

T5 reports whether or not a column can be considered as a part of a candidate
key. It is also used to assess the quality of the data in the tables.

T6 is providing the domain order of each column, this information helps the
analyst understand the content of the database. It is also used for data discovery
as the domain order can be queried against the other databases profiled. The sum
of the frequencies will indicate the level of similarity between the columns.

The aggregated values from T7 can be used to visualise trends in the data.

Finally, the univariate summary statistics from T8 such as mean, standard de-
viation, variance, maximum, minimum, percentiles (0.01, 0.025, 0.05, 0.1, 0.25, 0.5,
0.75, 0.9, 0.95, 0.975, 0.99), interquartile range, range, skewness and kurtosis, will
help to assess the distributions of the numerical data.

With this approach the analyst can cover different data types for discrete, nu-
merical, and temporal data.

2.4.3 SQL code generation

Many relational database management systems (RDBMS) use an internal database
called the INFORMATION SCHEMA database as a way to store the metadata
about the databases in the system.

The profiling tool executes T0 leveraging on the INFORMATION SCHEMA
database whenever is available, and implements ad-hoc scripts for systems using a
different method to store internal metadata such as Oracle, Delta tables, or Apache
Hive tables.

The SQL queries for T2, T4 and T5 only differ on the table and column names.
These queries are generated using the metadata database with the data collected in
T0. Also, T4 and T5 go together in a single query as they have the same target.

Chapter 2 Diego Alejandro Arenas Contreras 29

Data Science use cases in the Manufacturing Industry

Similarly, the SQL queries for T6, T7, and T8 can be generated using the
metadata of the source database.

2.4.4 Data Governance and Data Quality

The metadata database is a single repository that can be used for Data Governance.
It contains relevant information such as the number of NULL values per column
T5, that combined with the total number of rows per table T2 gives a metric of the
percentage of completeness of each column, highlighting any issues with the data.
The calculation can be computed at table, database, server, and company level.

The level of completeness provides a good assessment of the status of the data
and can be used to inform stakeholders and make decisions based on the quality of
the data.

The profiling tool can advise and generate warning alarms regarding the com-
pleteness level of the source database.

2.4.5 Candidate Key Search

The implementation of a candidate key finder is a brute force algorithm with a series
of heuristics in order to reduce the search space and to improve the performance of
the searches.

To search candidate keys for a given table, the algorithm assumes no prior knowl-
edge about the table. And it will always converge if the algorithm has enough time
and resources to process. It assumes that the given table has a primary key. But
even if this is not the case the algorithm has a mechanism to stop the searches if
suspects that.

The complexity of the algorithm is O(nk), where n is the total number of columns,
and k is the number of columns in the primary key of the table. In the best scenario,
the algorithm will provide a solution in linear time O(n) when k = 1, meaning the
primary key is a single column. The exploration of the solution discards unsuitable
candidate keys early in the process in linear time. Only the most likely candidate
keys will be evaluated in the full table.

Limitations. When a table does not have a primary key, the algorithm has a
stop mechanism, and it will search in reasonable spaces defined by the analyst. The
algorithm will inform the analyst that the table is presenting an unusual behaviour
for what it is expected.

The cadidate primary key search algorithm

As presented in Algorithm 1, the algorithm receives three parameters: a table name,
a k max integer number, and a threshold of accuracy as a real number between 0
and 1.

The primary key could be a single column or a combination of columns in the
table. The k max parameter is the maximum number of columns to use to calculate
the combinations without repetition using all the columns from the table. The
default value is five k max = 5, this means that the algorithm will stop after testing
all the combinations of five columns as candidates for the table, whether it finds
candidate keys or not.

30 Chapter 2 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Algorithm 1 Candidate primary key search

Input table name, k max, threshold
Output log file with candidate primary keys.

1: D1 ← get top 100 rows(table name)
2: D2 ← get top 10000 rows(table name)
3: D3 ← get top 1000000 rows(table name)
4: columns← get column names(table name)
5: for k = 1 to k max do
6: candidate list← get combinations without repetition(columns, k)
7: for candidate key in candidate list do
8: temp result← get count unique values(candidate key,D1)
9: if temp result/total rows(D1) ≥ threshold then

10: candidates 1h← candidate key
11: end if
12: end for
13: if length(candidates 1h) > 0 then
14: for candidate key in candidates 1h do
15: temp result← get count unique values(candidate key,D2)
16: if temp result/total rows(D2) ≥ threshold then
17: candidates 1k ← candidate key
18: end if
19: end for
20: if length(candidates 1k) > 0 then
21: for candidate key in candidates 1k do
22: temp result← get count unique values(candidate key,D3)
23: if temp result/total rows(D3) ≥ threshold then
24: final candidates← candidate key
25: end if
26: end for
27: if length(final candidates) > 0 then
28: for candidate key in final candidates do
29: temp result← get count unique values(candidate key, table name)
30: if temp result/total rows(table name) ≥ threshold then
31: candidate primary keys← candidate key
32: end if
33: end for
34: end if
35: end if
36: end if
37: end for
38: return candidate primary keys

Chapter 2 Diego Alejandro Arenas Contreras 31

Data Science use cases in the Manufacturing Industry

The threshold is the minimum percentage of acceptable accuracy for any candi-
date to be reported as a candidate key. The default value is 99.999%. For example,
for a table T with NT number of rows, and a candidate c with NT

c number of rows
in the set formed by ck, NT

c divided by NT must be greater or equal to 0.99999 for
the algorithm to report it as a finding or a candidate key.

The output of the algorithm is a list of one or more recommended candidate keys
formed by columns of the table. It is for the analyst to decide what candidate key
to choose.

The algorithm will create three sampled datasets, D1, D2, and D3 with 100,
10,000 and 1,000,000 rows respectively from the table that is being processed and
it will keep them in memory. It will also create a list of usable columns from the
table. If T5 has been computed it will use this information to discard all columns
containing NULL values because a primary key can not have NULL values on it; if
T4 has been computed it will discard all columns with single values, otherwise, it
will return a list of all columns in the table. The total number of usable columns is
n.

As it is presented in Algorithm 1, the algorithm will start iterating from k = 1
to k = k max. It will compute a list of all the combinations without repetition
of k columns in n. For k = 1 is the same as the list of all usable columns. Then
per candidate key in the list of candidate list it will compute the number of distinct
values using the candidate key in the D1 dataset, if the number of distinct rows
divided by the total number of rows in the sampled dataset is greater or equal to
the threshold of accuracy, then the candidate will be temporarily stored in a new
list of candidates to be tested in the D2 dataset.

If one or more candidates surpass the threshold using D1, then that reduced
number of candidate keys will be evaluated in D2, if one or more candidates pass
this second evaluation, they will be stored in a new list of candidates and then
will be evaluated in D3. The candidates that pass the third evaluation in D3 will
be stored in a list of final candidates and will be evaluated in the full table in the
database.

If a final candidate passes the evaluation using all the data in the table, then
it will be reported as a candidate key by the algorithm and made available to the
analyst.

If zero candidates pass the evaluation of a sampled dataset (D1, D2, or D3), the
algorithm will increase k = k+1 and will get a new list of combinations of k columns
with its new value, and start to test the new candidates in D1.

If zero candidates are found after the last iteration when k = kmax, the algorithm
can stop there or decrease the threshold parameter by 1% and restart the evaluations.
This stop is optional and the analyst can define a maximum number of iterations to
decrease the threshold.

If accuracy of 100% is achieved during an iteration, the algorithm will stop at
the end of the run, after having tested all the candidates with the same number of
k columns.

Example of search candidate primary key algorithm

The steps will be followed with an imaginary example to demonstrate how the
Algorithm 1 works. A table with 20 million rows and 42 columns; and that composed
primary has two columns.

32 Chapter 2 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Inputs. The table name is needed to generate SQL code to query the source
database to collect the column names and sample data and test the quality of the
candidate primary keys, table name = test table. The second parameter is k max
that, for the example, will be set to 5 (five), meaning that the algorithm will stop
after testing combinations without repetition of 5 columns in the 42 columns of
the source table for candidates for the composed primary key. A threshold =
0.99999 means that the candidate composed primary keys are required to explain
the uniqueness of 99.999% or more of the total number of rows in the table. This
parameter represents a condition of sufficiency.

Processing. Lines 1 to 3 generate three sample datasets that will be used incre-
mentally. Line 4 gets a list of all the column names of the table. The combination
without repetition when k = 1 is the same list of unique columns (combinations only
are computed when k is greater than one), so the list of candidate keys is equal to
the list of the 42 unique columns. Then, for each of the 42 columns, the algorithm
will compute the number of unique values the column can produce and compare it
with the total number of records in the table. The algorithm must complete the
evaluation of all the combinations before deciding to continue evaluating the com-
binations in larger sample datasets or to stop the exploration of k combinations
and move to k + 1 combinations and repeat the process; in line 13, the algorithm
is evaluating if there are any candidates, if it doesn’t find any then it will move to
k + 1 combinations. For this example, let’s say that none of the 42 columns was
sufficient to generate 100 unique records so that the algorithm moves to the next
round of evaluation of combinations of columns. It will compute the combination
without repetition of 2 columns using the 42 available columns, equal to 861 com-
binations using two columns at a time. Between lines 7 and 12, the algorithm will
evaluate the 861 combinations. For the sake of this example, let’s say it found 5
of the 861 combinations that could produce 100 unique rows. Now the algorithm
will move the 5 potential candidates to evaluate them in a larger sample dataset of
10 thousand records. Only 5 evaluations are necessary and happen in RAM. Let’s
say that 3 out of 5 candidates can produce 9,990 or more unique values. The next
step is evaluating the 3 potential candidates in a bigger sample data set between
lines 21 and 26. If any of the 3 candidates surpasses the threshold it will be sent in
a query to the source database to be evaluated with all the data in the table. For
the example, let’s say 2 of the 3 candidates generate more than 99.999% of unique
records using all the data in the table.

Output. All the intermediate and final results are logged to a file available for
the analyst to explore and decide by visual inspection which combination of columns
will define as the primary key for that table.

2.4.6 Performance

The use of sampled datasets increases the performance of the search. Often the use
of 100 rows will act as a filter to not continuing testing a candidate. As D1 is kept in
memory the evaluation of a great number of candidates can be performed in seconds
rather than testing it against the full table in the database. Only the candidates
that have passed the funnel process will be tested using all the data. A task like this
will take hours, even for a trained analyst, testing possible combinations of columns.

The evaluations on D1, D2, D3 happens in local memory, which means less usage

Chapter 2 Diego Alejandro Arenas Contreras 33

Data Science use cases in the Manufacturing Industry

of network or remote processing in the host database. Only a reduced number of
queries will be sent to the database that should be able to respond.

The time to move the sampled data sets depends on the network velocity. Once
the data is loaded into local memory the first pass takes the order of seconds and
the second and third passes can take minutes for a single table. The evaluation of
the final candidates may take up to hours depending on the size of the table and
the processing power of the host database server.

The algorithm described in in 2.4.5 can be parallelised and distributed as each
run is testing different columns. The number of simultaneous evaluations is given
by the number of cores in the local machine. For the number of queries sent to the
database we wouldn’t advice to overload the database with multiple queries, it is
planned to improve the algorithm to timing the latency of the responses from the
database in order to establish the right number of simultaneous queries to send to
the database without overloading it.

2.4.7 Data Discovery

Discovering where and how data is stored in databases is a challenge when there is
no schema to query the provenance of the data. The analyst will see a graphical
user interface of an operational system showing specific data, but it is difficult to
find the tables without a relational schema of the database.

The frequency metadata captured by the profiling tool provide a simple way to
interact and search for similar data sets in columns from different tables and systems.
T6 provides a key to join different columns using a one-to-one join because all values
will be unique.

The column’s similarity feature allows to discover potential interrelation between
tables.

2.5 Evaluation

We ran the profiling tool in a MySQL v5.7 server on a database of with 251 tables,
more than 4.3K columns, and more than 4 billion rows in total that took less than
12 hours to run.

Of the 251 tables, 250 tables have a primary key of a single column or composed
by two or more columns. 91.2% of the candidates suggested by the algorithm were
the or part of a primary key. For tables with more than 1 million rows, the algo-
rithm’s precision was 100%, all the suggestions given by the algorithm were among
or were the primary key of the table.

We ran another search in a database with 120 tables that took in total 34 hours.
93% of the tasks took less than one minute to finish, and a 0.625% of the tasks took
more than 10 minutes to complete accounting for 31 hours of the 34 hours total.

For example, for one table with 61 columns and 285,956 records. The algorithm
took an hour and thirty five minutes on the first pass to resolve that there were 349
candidate keys out of 521,855 combinations of potential candidate keys formed by
four columns. The 349 candidates were reduced to 96 candidates, with an accuracy
of 100%, in less than two minutes on the second pass. Finally, it was resolved in less

34 Chapter 2 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

than one minute that there were nine potential candidate keys for that table, and
the selection was left to the analyst to decide.

A different table in the same database had 10,702,693 rows and 48 columns.
It took the algorithm less than six hours for find 341 candidate key formed by five
columns among the 1,712,304 possible combinations of five columns in the first pass.
And then, it took only seconds to find the final ten candidate keys.

The table that took more time was a table with 56 columns and 79,092,409
records. It took 12 hours and 30 minutes to determine 71 candidates out of 3,819,816
combinations of five columns. And then, ten minutes more to determine 2 (two)
potential primary keys for the table.

2.5.1 Support

The process is database agnostic and the library currently supports the database
engines of: SQLite, MySQL, PostgreSQL, Oracle, MS SQL Server and Azure SQL
Server, Databricks Delta Tables, and Apache Hive tables. There is no indication
that it could not support other RDBMS not listed in the tests.

The MySQL, PostgreSQL, and MS SQL Server engines use the INFORMATION SCHEMA

database. Whereas Oracle has different data structure to pull the data from that
is also supported. Databricks Delta tables and Hive tables are analysed using the
spark.sql() context and the SQL queries are generated similarly to the rest of the
database engines.

2.6 Conclusions

Exploring tables and databases is a process that can be automated due to the type
of analysis of descriptive statistics. Data exploration is a time consuming task
for most analysts and gains in time dedicated to analysis can benefit companies,
specially when using large data sets.

We presented a process to automate the exploration of databases. An algorithm
to identify candidates keys on tables. And a way to find related data across multiple
systems using aggregations of the data and assuring closure using the domain values
from the metadata.

This tool is useful to populate datalakes and data warehouses. Identify changing
in the data and gain understanding of all the data companies collect.

A consulting company uses AEDA in Chile5 to profile the databases of their
clients as one of the first tasks in their projects to have rapid access to the metadata.
They then provide search functionality at domain value level to their customers to
the data catalogue generated with the tool and provide data quality assessment
reports. The most notable instance of a database profiled is a SAP HANA instance
with more than 152 thousand tables and more than 1.7 million columns.

2.6.1 Future work

This library has the potential to become a simple tool to gain insights from databases.
Future work on this library includes the computation of mutual information between

5Stratify is the company that is currently using the AEDA library on their projects,
https://stratify.cl (accessed 18 August 2022).

Chapter 2 Diego Alejandro Arenas Contreras 35

Data Science use cases in the Manufacturing Industry

columns from different tables. These tables can come from various source systems
but can be matched using metadata and a simple similarity calculation using the
domain values and their frequencies. This information potentially will indicate that
two tables might be related.

Future work for this library includes providing a user interface that makes it easy
to visualise summary information from the metadata database and search function-
ality to explore the data using ElasticSearch for full-text indexation and a Grafana
dashboard to visualise the collected metadata and provide data quality reports off
the shelf after running the exploration.

36 Chapter 2 Diego Alejandro Arenas Contreras

Chapter 3

A Streaming Analytics
Architecture

Summary

This chapter describes the design and implementation of an experimental data ar-
chitecture to process data on the move while ensuring the collection of data and
delivery to the architecture components that will process it. It contains all the
elements of modern data architecture for fast, reliant, and efficient data processing.

3.1 Introduction

With the introduction of the Apache Hadoop project based on the design of two pa-
pers published by Google about their Google, File System [25], and the MapReduce
algorithm [34] in 2003 and 2004, respectively. For the first time, companies could
process enormous volumes of data on standard machines. Creating clusters of com-
modity machines made it possible to process massive volumes of data for companies
without supercomputing or oversized hardware. It started as a cost-effective way
to process enormous volumes of data in batches but is moving towards a real-time
analytics approach adding value.

The launching of Apache Hadoop as an open-source project in 2006 allowed
companies to start processing data they had been collecting for years. Apache
Hadoop is a distributed system that abstracts the complexity of distributing data
storage in shards using different machines within a cluster. Shards are parts of data
files. A file can be composed of a series of shards, and shards can be replicated,
saving a copy of it in the storage available of multiple machines. The distribution of
the storage allows processing the files locally using the MapReduce framework. The
principle and advantage behind Hadoop is local access to the data. Data is processed
where it is stored, reducing network traffic and potential bottlenecks produced by
moving data around the network. By default, Hadoop replicates the shards of each
file three times.

Big Data Technologies allow companies to process more data than ever before,
helping organisations identify business opportunities and optimise business opera-
tions.

37

Data Science use cases in the Manufacturing Industry

We can see a shift around the type of data processed at organisations from us-
ing almost strictly structured data to the use of semi-structured and unstructured
data. Nowadays, new data sources are added regularly and in different data formats.
Cheaper storage is one of the reasons why companies are collecting and wanting to
use more data than in the past. Better throughput in network bandwidth impacts
the development of new technologies and frameworks (software) that better use the
available hardware, commodity hardware.

This new stage in the era of big data has affected how companies process and
analyse data. Streaming analytics is now an important aspect of the enterprise data
architecture. Moving from a batch processing approach to a streaming one, where
data is processed as soon it is produced.

This chapter presents the results of a minimum working experiment of a stream-
ing analytics architecture. The data architecture is deployed as a set of micro-
services. Micro-services allows connection and disconnection of the data services,
minimising the impact and performance to other components of the architecture.

At the time of the design and implementation of this project, there were no plans
of having a data lake or central repository.

The suggested architecture has a central transport layer, a persistent data layer,
a monitoring system, and an exploratory & modelling component. This experiment
intends to find a sound data architecture capable of processing and delivering value
from telemetry data an organisation is collecting from devices worldwide. The
telemetry data for this experiment has been simulated.

The problem statement of the experiment is presented in Section 3.2. In Section
3.3 several concepts and terms are presented to go through this chapter. The solu-
tion design is described in Section 3.4. Data requirements are in Subsection 3.4.1.
Results of the experiment are in Section 3.5. The evaluation of the results are in
Section 3.6.

The data science architecture with streaming analytics was presented as a generic
solution for an organisation at the Edinburgh Docker Meetup in the January event
of 20171.

3.2 Problem Statement

The telemetry data for this project is coming from assets or machines deployed on
project sites in different locations around the world. These machines provide tem-
porary electric power, heating, and cooling solutions to customers from multiple
industries and sectors such as mining, oil & gas, construction, and many others.

The sensors are attached to the machines measuring a wide range of signals and
levels necessary to monitor the devices’ workload properly. The data challenge is
collecting, storing, processing, and analysing the data produced by the sensors. We

1Edinburgh Docker Meetup event page, https://www.meetup.com/Docker-
Edinburgh/events/kxsmtlywcbzb/ (accessed 09 October 2021).

38 Chapter 3 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

need to create analytical capabilities in the organisation with a sound data architec-
ture supported by a sound technological infrastructure to support the information
needs of the business. The question to be answered, to handle and process all the
data adding value to the company, is:

How can we design a technological infrastructure to support the col-
lection and processing of the ever-increasing telemetry and operational
data?

One of the main goals of the IT Team of the organisation is to enable advanced
analytics capabilities to implement machine learning models for preventive main-
tenance, scoring of business proposals, cross-selling to current customers, up-selling
of solutions based on the history of transactions, etc. This goal is considered for
this proposal of a data architecture implementation.

3.3 Background

Data-driven organisations prepare their growth in data maturity on multiple fronts.
Getting ready is a three-fold effort. It is about people, technology and culture.
Within the culture, we can find the processes that are used by the teams.

People refer to the collaborators of the organisation and their development and
contributing skills to the team. It defines the technical skills of the data profes-
sionals that work with data. Deploying systems in production environments is very
relevant. The last mile matters when it comes to the delivery of solutions.

The organisation has an on-premise data warehousing platform. It is used for
reporting to business users. As is often the case with data warehousing technologies,
it is very strict with data format from the inputs. The system grants little flexibility
on what data should be stored, and any changes will take time before the load and
transformation processes of the data sources are modified. The data architecture
that we will suggest in this project will work with the data warehouse. Still, we will
also recommend the potential incorporation of a Data Lake to the technology stack
of the organisation.

We will define a few concepts before describing some of the design criteria used
for the data architecture. We will introduce a series of concepts such as data lake,
microservice architecture, and enterprise architectures such as lambda architecture
and kappa architecture.

We will use the concepts of abstraction and encapsulation to design the data
architecture.

Microservice architecture is based on the idea that each system functionality
should be implemented independently and deployed as a service. Each service inter-
acts and communicates with the other services. Each service always performs the
same task that is self-contained with all the dependencies needed to execute it.

Chapter 3 Diego Alejandro Arenas Contreras 39

Data Science use cases in the Manufacturing Industry

3.4 Design

Designing an enterprise data architecture is a non-trivial task which needs to consider
many different factors.

A constraint for this EngD project was the use of Microsoft Azure as the cloud
provider used by the organisation. The design will adapt to this constraint.

The first factor is the purpose of the solution, the end goal of having a new tech
stack implemented, and the consequences of not having it. Understanding how a
new architecture will change processes by making them more efficient or disrupting
the teams’ working methods. At the same time, it is necessary to understand the
volumes of data required to be handled by the data architecture.

We also need to think about the performance of the data architecture. We need
to consider that the system should be scalable and handle the current and future
workload.

Additionally, there are some factors that we need to consider, such as the current
technology stack and the integration with existing technologies. These two factors
can help us recommend the best approach suitable to the organisation’s needs and
capabilities.

We can reduce the data architecture options by asking some questions. The
answers to these questions will condition the responses of follow up questions. What
questions should we ask before starting a project like this?

The first question is why we are starting a project like this? What is it that we
want to achieve? This helps to keep the end always in plain sight to make crucial
design choices along the way. We started from the base of having a stable data
warehousing platform that has been in evolving development for the last 15 years.
Batch processing is a well known way to process data for the organisation, but at
the time of the implementation of this project, more and more generators and other
machines were fitted with sensors it was expected to have more incoming telemetry
data than in the previous years. There was also a need for more real-time analysis
such as the one for predictive alarms based on recent data. Batch processing takes
some time between when the data is produced until it is consumed by a model to
generate some results. This challenge in velocity can be solved with a streaming
processing architecture that is able to process the data as it is received in a landing
area or platform.

We can continue with the following questions: are there efficiencies in costs,
efforts, people, technology? How does this integrate with the current technological
stack? Will this system require more or fewer people to be maintained? Will this
solution enable other projects within the organisation? If not, how can we adapt
and support the current and future efforts of a data-driven organisation? Does the
new architecture require new skills and capabilities from the tech team? If so, what
are the current gaps? It is essential to prepare the change to bring new technologies
to the organisation and avoid underutilising new technologies and resources. Is this
technology the right fit for the demand we have or that we will have?

A streaming architecture would extend the current batch processing strategy of
the organisation. Incorporating streaming processing would require implementing
and learning a new type of platform designed to handle queues of messages instead
of tables and bounded data sets. The data in a streaming architecture is unbounded,
and that is one of the advantages of using it, the fact that it can handle the incoming

40 Chapter 3 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

data with minimal delays in the data workflows.

After considering the factors mentioned above, we suggested a streaming an-
alytics data architecture to process incoming data in real-time or near real-time,
with a batch processing layer. This architecture is known as the Lambda Architec-
ture2. This type of architecture has been proposed in [63] for real-time predictive
maintenance, which is one of the goals of the organisation. The other option was
to implement a more efficient batch processing workflow to process more incoming
data but this is not what we are seeing when the demand for processing real-time
data increases, we see a transition towards streaming platforms that can handle the
data analysis and processing of a continuous flux of streams of data.

We recommend to separate the computing from the storage [76] of the data. Also,
the decision of building something on-premise or in the cloud should be addressed.

Building an analytic architecture on-premise means that the machines have to be
sized in advance, acquired, and maintained by an on-premise team. This also means
that we have a fixed amount of resources allocated to the project. To perform a
correct sizing process, the analyst must know the computing demand of the system
in advance. The result can be a group of powerful but underutilised machines.

Deploying the system to the cloud means that the cloud provider performs the
maintenance of the machines. The system then is highly scalable, allowing to add
or remove resources at will. The time to the first test is shorter because the team
can start using the available resources sooner than with an on-premise approach.
The use of the cloud is often a pay-for-use model, and this approach will be cheaper
than acquiring and maintaining all the machines before starting coding.

If the system’s analytic demand and use cases are unknown at the beginning of
the project, we recommend implementing the system in the cloud. Once the system
requirements have been sized and tested, an on-premise deployment could be con-
sidered based on several factors like cost, team familiarity with the technology, and
time available for a transition.

The proposed architecture is designed as a set of independent services, microser-
vices, providing batch and real-time analysis in a scalable and flexible way. It is
scalable because the platforms can balance the load and increase their processing
power on demand. It is flexible because there are alternatives for each service or
component of the architecture. A microservice architecture has several advantages
for data science environments.

A data service can be defined as an independent system that interacts with other
data services to provide specific functionality to the ecosystem that other services
are not providing. A service can be composed of other services. For example, a
Hadoop cluster providing a data lake service can be formed by independent ma-
chines providing processing power to the cluster.

We suggest a streaming processing approach because it would allow us to ingest
and process telemetry data as soon as it is produced. With an ecosystem of data

2A repository dedicated to the Lambda Architecture, http://lambda-architecture.net (accessed
10 November 2021).

Chapter 3 Diego Alejandro Arenas Contreras 41

Data Science use cases in the Manufacturing Industry

Figure 3.1: Components of a streaming and batch processing architecture.

services for several reasons: it would facilitate rapid prototyping connecting com-
ponents to the architecture as they are needed; it will provide isolation among the
components; it offers flexibility to upgrade, change and modify the data platforms
in use, with minimum impact to the rest of the services in the system; it provides
a clear division of the processing from the storage which helps users to access the
data and use it for different purposes.

The designed solution serves two other critical criteria considered best practices
in the industry: 1) developing a unique data repository for data users and 2) moving
the company towards a self-service data culture.

The reasons mentioned above apply to creating a data science environment for
the organisation.

The experiment is a minimal realistic scenario where streaming analytics is ap-
plied. Figure 3.1 presents the components of the architecture. Raw data is ingested
from a streaming platform used as a central transport layer. The platform stores
and classifies the incoming data and delivers the data to the other components of
the architecture. The other components in the experiment are: a set of machine
learning models deployed as services allowing to query them or consuming them via
REST APIs sending a data tuple and the model will reply with the score or the
results processed in an isolated machine or hardware; we suggest a batch processing
platform to analyse and monitor big volumes of data. This will be a version of a
data lake. There is a persistent layer to store metadata and significant datasets.
And a component for data scientists to query, exploring and model the data.

We will simulate the telemetry data for the experiment. This will allow to deploy
and test the experiment in environments in the cloud like Microsoft Azure3 or other
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), or Software as a
Service (SaaS) providers and not exposing the actual data.

The objectives of the experiment are:

• Test the fitness of a streaming data analytics architecture for the company’s

3Official website of Microsoft Azure, https://portal.azure.com (accessed 10 October 2021).

42 Chapter 3 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

data.

• Test scalability of the system and estimate the data volume demand.

• Test a data architecture where the data is processed/consumed as collected/produced.

• Evaluate costs and technologies to implement this type of architecture.

The milestones of the experiment are:

• Simulate telemetry data to use it for testing the solution.

• Deploy a streaming analytics platform.

• Deploy a batch processing platform.

• Deploy machine learning models as services.

• Deploy a real-time analytics platform.

• Deploy a data visualisation tool or dashboard.

3.4.1 The data

The data architecture should handle data from at least 3,000 devices per day and
scale up until around 20,000 devices per day. The baseline of the experiment will
simulate sending data every 30 minutes, and we will estimate the data demand for
the next two years.

3.4.2 Architecture set up

We used Microsoft Azure resources to deploy the working experiment. It is imple-
mented as IaaS because it provides flexibility and control to deploy the platforms
required for the experiment. IaaS is also cheaper than PaaS and SaaS for testing
and non-production environments.

The storage, processing power, and bandwidth are provided as IaaS by Microsoft
Azure. The experiment is running in containers using the Docker platform. The
Docker platform is running in virtual machines (VMs) with Ubuntu Server 17.04.

Containers. It is a technology that uses the Linux Capabilities4 isolating the
processes running in Linux. Each container has access to CPU and memory, I/O
resources, file systems, and network resources. Containers interact directly with the
Linux kernel providing fast access to the machine resources. Containers are one or-
der of magnitude faster than VMs, so they are recommendable for rapid prototyping.

Docker is a company that encapsulated the interaction with some of the Linux
capabilities providing an API to work with containers.

In terms of billing costs, it is expected that IaaS will be cheaper than a PaaS
and SaaS. This report is not going deeper on this matter. Still, it can be mentioned
that, for example, using IaaS, one can install any open source big data platform
like Apache Kafka, paying £105 per month for a VM. In contrast, a similar PaaS

4Linux capabilities manual page, http://man7.org/linux/man-pages/man7/capabilities.7.html
(accessed 10 October 2021).

Chapter 3 Diego Alejandro Arenas Contreras 43

Data Science use cases in the Manufacturing Industry

technology like Event Hub by Microsoft will cost USD 733.13 per day5. Of course,
there are differences between the resource configuration of both implementations.
The resources of the VMs are managed by an end-user, whereas the cloud provider
manages the PaaS resources. Both are managing a fixed amount of available re-
sources.

This project aims to determine the need for a big data infrastructure for the or-
ganisation. We should avoid the risks of the scenarios of over and under-provisioning
resources. It is necessary to find the right amount of resources to provision at a rea-
sonable price. How much is a reasonable price should be determined by evaluating
the alternatives available.

3.4.3 Components of the Architecture

The tools selected for the experiment are:

• Apache Kafka 2.11

• Python 3.x

• Jupyter Notebook

• Hadoop 2.7.2

• Pentaho 7.1

• PostgreSQL 9.6

Transport Data Layer

There are many options in streaming processing platforms. Among the candidates
for this component of the architecture we can find Spark Streaming [46], the Spark
library for streaming processing, process data in mini-batches. Apache Storm [48],
developed at Twitter like its successor Apache Heron [51]. The Heron platform
is at incubation6 phase at the Apache Foundation but already has shown better
performance than Storm. Apache Kafka [41] and Apache Flink [50] implement
stream processing as a record-at-a-time approach, instead of mini-batch. Apache
Flink is also an incubating project with a promising future.

The platforms in Azure providing streaming processing are the ones for Internet
of Things like Event Hub and Stream Analytics7.

We choose Apache Kafka8 as the transport data layer platform because it can
handle high volumes of real-time data feeds with high throughput. It can deal
with periodic data loads from online and offline systems, and it offers a partitioned,
distributed, real-time processing environment. Also, it guarantees fault tolerance
in the presence of machine failures. Kafka reports performances of handling 20.000
messages per second [41] and our expectation is a much less threshold of 11.11

5Azure Event-hub pricing, https://azure.microsoft.com/en-us/pricing/details/event-hubs/ (ac-
cessed 12 January 2017).

6Official documentation website of Heron, http://incubator.apache.org/projects/heron.html,
(accessed 10 October 2021).

7Stream Analytics pricing page, https://azure.microsoft.com/en-us/pricing/details/stream-
analytics/ (accessed 10 October 2021).

8Official webpage of Apache Kafka, http://kafka.apache.org/ (accessed 10 October 2021).

44 Chapter 3 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

messages per second simulating a fleet of 20,000 machines sending data every 30
seconds.

Kafka is a mature and stable technology widely used by tech companies like
Netflix, Spotify, Twitter, PayPal, Uber, Airbnb, and LinkedIn9 among others.

We will use the kafka-python10 library to connect services to the Kafka server
and vice-versa.

In Kafka, the replication factor controls how many times the data will be copied
in other servers. The partition count impacts the maximum level of parallelism to
consume the data.

Persistent Data Layer

We selected the Postgres [7] database because of its good performance and its open-
source database and does not require licence fees. Is one of the most widely used
databases11 in the market. It is simple and easy to use. A close alternative is the
MySQL12 database.

Postgres has an official Docker image13 at the Docker Hub, which makes it suit-
able for the experiment using containers.

We will use the psycopg2 14 Python library in client programs to collect and send
data to the database. We can deploy the persistent layer of the experiment with a
single line of code using Docker.

Data Exploration & Modeling layer

The Jupyter Notebook with the base installation15 container is used for the experi-
ment. Data exploration can be performed using containers with notebooks created
on demand by data scientists and removed after use. The base installation has
Python 2.7 and 3.6 kernels by default, but the analyst can install multiple kernels
to work with Spark or R, for example.

A Jupyter notebook can be created with a single line of code. The analyst will
then go to the URL that appears in the terminal and work using its web browser to
process the data on the server side.

Batch Processing

Most of the companies use Hadoop as the preferred storage system for their data-
lakes. That is why the experiment considers a small Hadoop cluster that can scale-
out in datanodes. The replication factor will be three.

9Official website of Kafka users, https://kafka.apache.org/powered-by (accessed 12 January
2021).

10Github repository of the kafka-python library, https://github.com/dpkp/kafka-python (ac-
cessed 10 October 2021).

11https://db-engines.com/en/ranking
12https://www.mysql.com/
13Official Docker hub page of the PostgreSQL database, https://hub.docker.com/ /postgres/

(accessed 10 October 2021).
14http://initd.org/psycopg/
15Github repository of Docker Jupyter Notebooks, https://github.com/jupyter/docker-

stacks/tree/master/base-notebook (accessed 10 October 2021).

Chapter 3 Diego Alejandro Arenas Contreras 45

Data Science use cases in the Manufacturing Industry

The Hadoop cluster is deployed in containers. The cluster, by default, uses three
containers, one container as the master node and two containers as data nodes. The
cluster can be re-sized at will, scaling in or out. Scaling in takes more time than
scaling out because of the re-balancing of the data stored.

Monitoring

The tool kafka-manager 16, was developed by Yahoo! engineers. It is used to monitor
the performance of the Kafka server and its brokers. It allows checking the load, the
number of messages sent to Kafka and throughput.

To visualise the data from the database, we have two options: 1) Pentaho Busi-
ness Intelligence Server Community Edition17, and 2) Microsoft Power BI is also
connected to the Postgres database.

Machine Learning Models Deployment

There are usually three ways how companies deploy machine learning models in
production. 1) Deploying the ML model in a lightweight web server as a REST
API service, where it can receive GET messages and reply to the score of the model
calculated on the server side. 2) Deploying it as a PMML (Predictive Model Markup
Language), an XML standard to exchange and deploy ML models, so the model can
be trained with one tool and deployed with a different one. And 3) using the
deployment tools provided by the framework where the model was trained.

Inference is the process of predicting a value using a machine learning model.
The inference task often occurs as an offline process, but this should be an online
task for a streaming analytics architecture.

There are multiple options to deploy a machine learning model as a service. A
simple approach is to deploy it using a lightweight webserver. The webserver will
receive GET calls from clients, and it will return a JSON file with the score.

The machine learning model can be stored in XML in the web server using the
PMML standard.

The deployment of machine learning models is further explored in Chapter 4
about Machine Learning Governance.

Telemetry Data

The telemetry data was simulated using Python scripts running in containers. Each
container represented an asset or group of assets sending telemetry data. The analyst
can create any number of assets with a bash script that receives the number of
assets to be created. Each container simulating assets is automatically deleted after
a successful run.

Two parameters are required to simulate an asset: delay, which is the number
of seconds between samples and limit, which is the number of data samples to be

16Github repository of the Kafka Manager tool developed by Yahoo! engineers,
https://github.com/yahoo/CMAK (accessed 10 October 2021).

17http://www.pentaho.com/

46 Chapter 3 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

sent by the asset. The simulated assets send data every 30 minutes reporting vari-
ables like voltage, amperage, temperature, pressure, frequency, fuel level, battery,
hours of continuous power, and RPM. The delay parameter allows to speed up the
experiments instead of waiting 30 minutes to receive a data point.

For example, to simulate two weeks of data, the limit parameter should be
equal to 672. If the delay parameter is 5 seconds, then the results will be available
after 56 minutes.

The values of the variables of the assets are initialised using a Gaussian distri-
bution. The analyst can modify this in the future to take any desired shape and
distribution. An analyst could add random failures of assets to the simulation.

3.4.4 Connecting the architecture

As can be seen in Figure 3.1, Python scripts simulate telemetry data that are con-
stantly pushed to the Kafka server. The Kafka server works as a transport layer,
keeping the data for some time, seven days by default. Kafka delivers the data to
the consumer components like the Hadoop cluster and the Postgres database.

Data exploration and modelling can be performed using notebooks accessing a
database, file system, or Hadoop cluster.

The system is monitored using Pentaho connected to Postgres. Machine learning
models are pushed to a lightweight webserver.

3.5 Results

The experiment runs in virtual machines (VMs) with Ubuntu Server 17.04 on Mi-
crosoft Azure. We used Docker version 1.13.0 installed on the VMs. One VM called
dockerdev with four cores, 28GB of RAM, and 48GB of SSD storage, the other one
called docker-server was half the size of the first one.

We performed two types of tests. 1) How the system supports the amount of
incoming data flow, and 2) How the system supports the volume of stored data.
These are two different problems concerning the design.

We tested several configurations to evaluate the performance of the system. We
set the baseline as the current working conditions at the company by July 2017.

The system was tested using 100, 500, 1,500, 5,000, 10,000, and 20,000 simulated
assets. For one day, one week, one month and one year of data.

When the simulation reached over 700 containers started to struggle during the
first attempts, the host machine with 14GB of RAM, so the size had to be extended
to 28GB.

The next problem was the number of devices in the network with a maximum
of 1,024. The solution was to simulate a small fleet per container instead to use a
single container per asset. To have a single container per asset is still possible when
the number of assets to simulate is less than 1,024.

A simulation of 1 day of data from 1,500 devices, representing the current load
of the telemetry systems, took 4 minutes using a delay parameter of 5 seconds.

Chapter 3 Diego Alejandro Arenas Contreras 47

Data Science use cases in the Manufacturing Industry

Simulating 60 days of 100 assets, were 2,880 data points of telemetry data per
asset. The database was 56MB and had 288.000 data points after the simulation.

Simulating 20,000 assets required 500 containers with a pool of 40 simulated
assets in each container.

One day of data from 20,000 assets sending data every 30 minutes produce
960,000 messages. The Kafka server and the Postgres database received all the
messages successfully. The Kafka server had three brokers and 15 partitions for the
topic. The size of the database was 188MB for one day of data.

3.6 Evaluation

A microservices architecture allows isolating storage from processing. This facilitates
scaling the system out.

With this kind of load on a single machine Kafka server, a single node can handle
the amount of data produced in one year.

The separation of architecture components in data services allows scaling out
independently. If we were required to scale out the database by adding a new
node to the cluster, this would not impact the other data services or even upgrade
the database. Apache Kafka was central to the architecture, and it can scale out
depending on the demand. More machines can be connected to the server, having
zero impact on the other services.

The database can scale using shards and partitioning the data geographically.

48 Chapter 3 Diego Alejandro Arenas Contreras

Chapter 4

Machine Learning models
governance

Summary

This chapter presents the assessment of platforms and technologies used for machine
learning model management.

4.1 Introduction

With the increasing adoption of Machine Learning (ML) by data-driven organisa-
tions, the challenge is how to organise and manage the machine learning models
developed by the data science teams.

With the availability of big data sets in organisations, it makes sense to start
creating machine learning models that use the installed data infrastructure.

The administration of machine learning models and the processes related to them
is known as machine learning governance.

A machine learning model management tool has to provide support for the phases
of training and serving of the models. Training a machine learning model is the
process of fitting data to a machine learning algorithm to determine the parameters
that the model will use. We will understand a machine learning model or simply
model as a trained algorithm that has estimated the parameters used by the method.
Serving a machine learning model is the process of scoring the new data, feeding
the data to the trained model to get an estimation from the trained model.

There has been an increasing demand over time to train more machine learning
models in the by the data science team of the organisation. It is for this reason
that this project suggests a way to get ahead of the demand and plan to govern the
current and future data products related to machine learning models.

In this chapter, it is described the methodology used to evaluate some of the
software used for ML governance and, additionally, this chapter includes recommen-
dations to incorporate good practices from DevOps and adding explainability to the
machine learning model processes for the benefit of the users of the ML models.

49

Data Science use cases in the Manufacturing Industry

4.1.1 Benefits of ML Governance

Incorporating ML governance is recommendable to improve the communication be-
tween the data science and data engineering teams. Often, it is the data science
responsibility to train and create the machine learning models and then once the
mode has acceptable performance, they are handed to the data engineering team to
deploy them or, it is reported sometimes, to rewrite the models in a more efficient
platform or language and deploy the improved version of the model.

Monitoring multiple machine learning models in a production environment can
be a challenging task. Keeping track of the models in production manually requires
writing complex tailored code to maintain information about the models available
to the data scientists. The complexity of maintaining multiple machine learning
models over time increases with the number of models an organisation has.

Promoting machine learning models to the production environment means that
once a machine learning model is trained, it needs to be deployed to be consumed.
Deploying a machine learning model is often a manual task performed by a data sci-
entist or a data engineer. Once the model is deployed, there may exist other machine
learning models that are candidates to replace the one in production, but that at the
time of training, they under performed compared with the model promoted to the
production environment. The candidate models could continue scoring new data,
and their performance can be compared against the production model. If a model
candidate shows better performance than the production model, it could replace it.
Promoting a machine learning model seems a trivial task, but it could involve many
hours of effort. Evaluating and comparing the models, then replacing and versioning
the newly promoted machine learning model, and the implementation of the process
will be different depending on the type of model and language used for the model.

With an ML governance tool, it becomes transparent all the changes and versions
of the models used in the production environment and independent of the number
of models in use.

We reviewed a set of tools and platforms during this project to recommend a
sound and usable solution to the Data Science and Data Engineering teams for
ML model management. A DevOps approach was used and documented in a git
repository. As byproducts of this project, a set of guidelines to work in ML projects
and explainable ML were documented. In Sections 4.4 and 4.5 we present the
literature review and technology review respectively.

4.1.2 Contributions

The contributions of this project are:

1. A recommendation of tools for machine learning models governance. From
tracking the training and deployment of models.

2. Guidelines for coding and development and deployment of machine learning
models with DevOps approach.

3. Adding explainability to the training phase of the machine learning models.

50 Chapter 4 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

4.1.3 Structure of the project

This project was developed in three stages using Azure DevOps Projects and its git
repository feature to make it reproducible and repeatable. The code, configuration
files, and documentation are part of a git repository created for this project.

The first stage consisted of researching material about model management and
how the industry is deploying machine learning models. A list of platforms was
collected from publications and presentations at data science conferences. At the
same time, a survey was sent to the team members of the data science team to
include their perceptions and recommendations into this project. The questions
of the survey are shown in Appendix A. The outputs from the first stage were
the literature review presented in Section 4.4 of this chapter. A list of potential
tools was selected to be reviewed for model management in the following stages.
The platforms were sorted by potential usefulness to the data science team, so the
searching for a tool could stop when a platform or set of platforms would fulfil the
initial requirements. We created an evaluation criteria for the tools based on the
literature available with elements from the survey to the team.

The second stage involved preparing the infrastructure and code examples to use
in the experiments to test the machine learning model management platforms. It
was planned the use of Terraform1 to deploy virtual machines in the cloud provider
from the source code of the repository. The set-up included an Apache Kafka2

cluster for the staging area3 to send messages to published APIs of the machine
learning models created as part of this project, the scored results will also be stored
in the Kafka cluster. Kafka made it simple to stress test the ML model governance
platforms. This part was not used because the evaluation process focused on the
features of the platforms rather than on response times or stress tests.

The third and final stage was the evaluation of the selected platforms based on
the evaluation criteria generated in the first stage. The outputs from this stage
were the recommendation of the MLFlow platform for internal use and a workflow
guideline for machine learning model development and deployment.

The project team met every two weeks, and we maintained communication with
the senior analysts of the data science team to keep them informed about the progress
on this project. We prepared a tutorial of the tools in the middle of the project to
demonstrate the functionalities of some of the tools reviewed.

4.1.4 Terms, Definitions, and Acronyms

Library or platform. A library can be defined as a set of functionalities wrapped up in
a single package (the terms library and package are exchangeable); libraries abstract
code complexity and provide a simpler way of doing specific tasks. A platform is
often a set of libraries together proving an End-to-End solution, but sometimes a
single library is complete enough to be called a platform.

Flexibility is a crucial concept used to evaluate the platforms. It refers to the
ability to connect to and from other platforms. It means the opposite to have hard
constraints of languages, or technologies, or locked-in technologies that in general

1Official Terraform website, https://www.terraform.io (accessed 14 October 2021).
2Official Apache Kafka website, http://kafka.apache.org (accessed 14 October 2021).
3Staging area is temporal storage used as a buffer to receive the incoming messages and then

deliver them to other systems.

Chapter 4 Diego Alejandro Arenas Contreras 51

Data Science use cases in the Manufacturing Industry

should be avoided due to the risks of depending on specific providers.

The general recommendation will be to use MLFlow for the training phase of
the models and to use Azure Machine Learning (AML) to deploy them when this is
required.

In this chapter, the problem statement is described in Section 4.2. Section 4.3
covers the background about the technologies and ideas supporting this project.
Literature review is in Section 4.4. Section 4.5 will review the selected technologies
involved in the project. Evaluation is in Section 4.6.

4.2 Problem Statement

The administration of machine learning models is not a solved problem. There are
no mature or turnkey solutions. Often, big data technology companies, such as
Google, Facebook, Airbnb, Uber, etc., build their platforms for end-to-end machine
learning processes.

The increasing number of machine learning models in production environments
can be challenging to maintain without the right policies and governance procedures.
An ML model can be expensive to maintain due to the effort and resources required
to do so. An ML model may deviate from the expected behaviour, something called
concept drift, [28] and that could be unnoticed without monitoring it.

ML models are not isolated projects. Often, an initial inference experiment
evolves into an ML model deployed in a production environment. This official
model would need to be monitored. In some cases, the analyst will evaluate the
model against new data after deployment, feeding back the evaluation of the mod-
els. At the same time, the analysts can train other models on the same data. These
other models are known as candidate models that could eventually replace the of-
ficial model based on their performance. If there are three candidate models, the
analyst would like to track the performance of these candidates and compare them
against the official one. If a candidate model becomes the official one, the recently
replaced model could be observed for some time in case it surpasses the performance
of the new official model. Eventually, adding new data sources and using feature
engineering in the modelling will impact the deployed models. The data science and
data engineering teams aim to track the changes in the models, versioning them and
allowing easy substitution of the official model in the production environment. All
this work applies to handling just one model. One machine learning model solves
a specific business need. Tracking five or more versions deployed for one business
process could become a maintenance problem considering the effort and time avail-
able from a small analytics team. Some companies have reported having dozens or
hundreds of ML models in production. How to handle this problem is the aim of
this project.

The question is, how can we successfully deploy, versioning, evaluate,
and monitor the performance of the machine learning models deployed
in production environments to help the business in an efficient and cost-
saving manner? We want to ensure that the number of ML models deployed is
not a bottleneck. At the same time, the proposed solution reduces and mitigates the

52 Chapter 4 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

technical debt [52] or the future cost of additional work due to poor design decisions
made early on projects.

4.3 Background

One of the main challenges in data-driven organisations is maintaining control over
the organisation’s data sets and databases4. The solution to this issue is to imple-
ment policies of data governance [38], [37] to control and provide information to
stakeholders and analysts regarding the data sources available within an organisa-
tion. Data governance involves a series of best practices of handling and collecting
information about data sets in the form of metadata such as data quality manage-
ment and data provenance [22] among others. Data quality management maintains
information about the quality of the data sets and makes it available to analysts and
stakeholders to decide, for example, whether or not to use specific data for a given
task or implement policies to improve the quality of the data. Data provenance [22]
or data lineage documents the origin and the transformations applied to a piece of
data so that traceability can be visible to the users and analysts.

Similar issues to data governance are what data science teams face when they
start developing machine learning models. Governance over the ML models is a
new problem for data science teams. For example, maintaining an inventory of the
machine learning models can be difficult if there are no standardised practices and
repeatable processes. ML model governance provides visibility and consistency to
training ML models. It grants access to stakeholders and analysts to the models.
Visibility adds a layer of transparency, increasing the confidence in the models. Hav-
ing a repeatable process to train and deploy ML models allows analysts to improve
the models iterating on the development without the cost of manual maintenance
of the code.

We can recognise three main phases when data scientists develop a machine
learning model: 1) data preparation, 2) training and evaluation, and 3) deployment.
All three stages are essential for the success of a machine learning project.

Data preparation ensures that we are working with the correct data. The data
types becomes relevant because they define what kinds of ML techniques can be used
on a particular data set. Data transformation and feature engineering are included
at this stage.

In the training and evaluation phase, we are interested in tracking the metrics
and parameters of the trained models. This phase includes a series of tasks such as
data modelling, algorithm selection, model training, model evaluation, and model
selection, all of which are based on the selected metrics to measure performance.

The deployment phase is how we will serve the model. There are mainly two
ways of serving models in production: 1) in batch processing, applying the model
at once on the new data; or 2) deploying the model as a web service and making it
available for real-time scoring, often through a RESTful API.

For decades, the deployment of machine learning models and the serving part of
those models received less attention than the development or training part. More

4A technology constraint for this EngD project was the use of a specific cloud platform to
access and train ML models in a given cloud provider. This selection also determines the default
relational database engines used by the organisation.

Chapter 4 Diego Alejandro Arenas Contreras 53

Data Science use cases in the Manufacturing Industry

recently, there has been a surging interest in model management and consuming and
making these models available to users. The training of machine learning models
represents a small percentage of the effort [52] to deliver a machine learning model
in an organisation. Most of the time is consumed in other tasks related to the
validation and deployment of the models.

4.3.1 Challenges in ML model management

Developing machine learning is not only about training and deployment. There
are more challenges associated with machine learning management. Some of the
challenges in managing machine learning models are:

• Data science teams often struggle to cope with reproducibility, fairness, model
evaluation, and keeping the domain knowledge when a teammate leaves the
company.

• The number of ML models can be hard to track without a central repository
or a model registry.

• Scalability and responsiveness of the models can be a problem when demand
increases.

• The diversity of software tools that data scientists use daily can present some
challenges when and handing over the models due to the different backgrounds
and expertise of the analysts involved.

The nature of ML is different from Software Development (SD), but the adoption
of some of the SD techniques is a good fit for best practices in ML development.
We are talking about code versioning, Continuous Development & Continuous Inte-
gration (CD/CI), and DevOps. ML development is a dynamic process with training
and retraining models with an interactive evaluation of results where management
should be flexible and responsive. We explore the emerging culture of DataOps
briefly in Section 4.5.7.

At the organisation, the current way of deploying ML models is using sched-
uled runs of notebooks. This process scores the new data, but it does not track
performance metrics, model parameters, or the model version used for the scoring.
The notebook is scheduled to run and scoring new data. This is a sound solution
for inference, but it might become complex to handle it manually with many ML
models in the production environment.

4.4 Literature Review

Some of the challenges of serving ML models are pointed out in [82], [73], develop-
ment challenges such as how to validate the models, when is the right time to retrain
the models; data management challenges such as the lack of declarative language for
ML pipelines, querying model metadata; or engineering challenges such using more
than one programming language to build the models and pipelines, heterogeneous
skill level from users, how to ensure backward compatibility of trained models.

In addition to the traditional offline scoring using batch analytics and streaming
real-time serving of models, new architectures are proposed to serve ML models in

54 Chapter 4 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

[73], [62], and new tools addressing the serving challenges regarding deep learning
models or serving reinforcement learning models [80], [70].

The problem of ML models in production is a new concern for the research
community. It requires a multidisciplinary approach, SysML [89] a new research
conference was created to address these and other problems at the intersection of
Systems and Machine Learning research.

Big tech companies often develop their tools such as Facebook’s FBLearner [56],
Uber’s Michelangelo [69], or Airbnb’s Bighead5. These examples are closed source,
but the features are similar for any end-to-end solution: flexibility, experiment track-
ing, reproducibility, and model deployment.

Clipper [65] was one of the first open-source prediction serving systems launched
in 2016. Clipper6 is a distributed serving system that uses Docker containers and a
Redis database for persistent storage. Models are registered and deployed in isolated
containers. The models are queried using a single point of interaction via an API call.
Clipper can orchestrate containers using Kubernetes7. Clipper can track the data
that has been scored and also combine predictions from different models. Clipper
can deploy Python and Spark models.

Tensorflow Extended (TFX) [64] is a general-purpose ML platform. It supports
many different data tasks of ML, not only the serving part. TFX is an open-source
platform developed by Google. It was made for continuous training and serving,
with built-in tools for model validation and data validation to ensure reliability
and scalability of the models. TFX makes use of other Google tools such as Apache
Beam8 to schedule and execute processing, and needs Apache Airflow9 or Kubernetes
to deploy ML models or any custom workflow tool for serving purposes. TFX
provides a high-level API to define models and data processing pipelines, from data
validation to serving the models. TFX adds an interface layer between other Google
libraries for data transformation, data validation, training, model evaluation and
validation, and serving, making it an integrated ecosystem of libraries to work with
data.

Spark MLLib [60] is a distributed machine learning library available in Apache
Spark as part of the API of the system. It is written in Scala and uses native
C++ algebra libraries to improve performance at runtime. MLLib includes Scala,
Java, and Python APIs. It supports several methods and algorithms used for ma-
chine learning. MLLib integrates very well with standard Spark functionalities, so
performance and scalability are at the core of the development.

MLFlow [85] is presented as an open-source platform to handle end-to-end ma-
chine learning lifecycles. It is language and library agnostic. It is a high-level API
implemented in Python to track the training of ML models and their deployment
in production environments. It supports many deployment tools for ML models. It
covers three main challenges: experimentation, reproducibility, and model deploy-
ment.

Ray [80] is a platform for Reinforcement Learning (RL) tasks. Ray is a dis-

5Slides of a presentation of the Bighead framework, https://www.slideshare.net/databricks/bighead-
airbnbs-endtoend-machine-learning-platform-with-krishna-puttaswamy-and-andrew-hoh (accessed
14 October 2021).

6Official website, http://clipper.ai (accessed 14 October 2021).
7Official Kubernetes website, https://kubernetes.io (accessed 14 October 2021).
8Official Apache Beam website, https://beam.apache.org (accessed 14 October 2021).
9Official Apache Airflow website, https://airflow.apache.org (accessed 14 October 2021).

Chapter 4 Diego Alejandro Arenas Contreras 55

Data Science use cases in the Manufacturing Industry

tributed framework for training agents and interacts with simulations of environ-
ments. Tune [78] is a scalable framework for hyperparameter search focused on
deep learning and deep reinforcement learning.

An alternative to using already made frameworks is to adopt a standard for de-
velopment and then standardise the deployment using a standard format. OpenML
[49] for model exchange, it defines standards, so it makes it easy for different li-
braries to report and define machine learning tasks. Facilitates the benchmarking
of algorithms and models. Other initiatives include Predictive Model Markup Lan-
guage (PMML)10 and Portable Format for Analytics (PFA)11. Also, Neural Network
Exchangeable format (ONNX) for cross platform deployment of neural networks
models.

Finally, we believe that explainable machine learning [87] or Explainable Artifi-
cial Intelligence (XAI) [66], [59] is a concept that requires exploration by organisation
working with machine learning models [67]. We want to facilitate the introduction
explainability to the machine learning development process to the organisation. This
would help users understand specific scoring the data and data scientists to under-
stand and tune the ML models created. There are a few libraries for this task [61],
[71], [81], [90] that we wanted to explore in this project.

Concept drift [28], the issue that the data may change over time, impacting the
performance of the machine learning models, may become a problem in the long run.
It would be ideal that the recommended platform for model management can handle
this problem. A solution inspired by software development is model assertions [77].

4.5 Technology Review

We wanted the selected platform to handle four types of machine learning models:
classification, regression, anomaly detection, and recommendation systems.

We established initial criteria to rank the set of selected platforms. We rated
them based on two main factors: 1) their alignment with the current technology
stack of the organisation and 2) with the skills set of the collaborators of the data
teams at the organisation. In our case, we wanted platforms that integrate well
with the cloud provider of the organisation, and analysts could use with Python
programming language and Databricks (a commercial version of the Apache Spark
project), the main two tools used for data science and machine learning by the
organisation’s data teams.

We shortlisted MLFlow, Tensorflow Extended, Kubeflow, Databricks, and the
Azure Machine Learning service. The initial list of platforms considered more tools
like Clipper and Ray.

For machine learning interpretability the libraries LIME12 [61], SHAP13 [71], and
Aequitas14 [81] were selected.

10Official website, http://dmg.org/pmml/v4-4-1/GeneralStructure.html (accessed 14 October
2021).

11Official website of PFA, http://dmg.org/pfa/ (accessed 14 October 2021).
12Official LIME’s GitHub repository, https://github.com/marcotcr/lime (accessed 15 October

2021).
13Official SHAP’s GitHub repository, https://github.com/slundberg/shap (accessed 15 October

2021).
14Official Aequitas’s GitHub repository, https://github.com/dssg/aequitas (accessed 15 October

56 Chapter 4 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

The main objective is to achieve governance of the machine learning models
deployed in production environments. Secondary objectives are 1) to add explain-
ability to the modelling process, 2) use Azure DevOps capabilities for data science
projects, and 3) embrace Infrastructure as Code (IaC) whenever is possible.

In ML we can distinguish two main phases, training and inference. We include
data preparation tasks as part of the training phase. Inference is about scoring new
data with the trained model, also known as serving the model. There are many
ways to serve machine learning models from in-house web service deployments to
scheduled deployments on big data clusters.

An option that we don’t recommend for this project is to use exchangeable for-
mats to deploy the models. For example, using industry standards such as Predictive
Model Markup Language (PMML) and Portable Format Analytics (PFA). The same
idea applies to neural networks models with the Open Neural Network Exchange
Format (ONNX) project. We don’t recommend standardising formats because, in
our case, it is not required to transfer the models to third party platforms using
different environments or technology stack.

MLFlow was our selected platform for many reasons. It is a product developed
at Databricks, it is open-source, and therefore analysts can make checks or modifi-
cations on the code. MLFlow is flexible and language agnostic. At the time of this
project, it was in beta release, meaning that some functionalities may break in the
future. We also recommend the use of AML because it is the closest Microsoft solu-
tion for end-to-end ML model management. TFX was selected because it seemed an
excellent general solution ML. Kubeflow was chosen because it manages ML models
in Kubernetes, a technology that is gaining interest from industry15.

4.5.1 MLFlow

MLFlow is an open-source platform developed at Databricks to handle the machine
learning lifecycle.

MLFlow deploys an internal server to store information about the models. The
user just needs to add calls to the MLFlow API into the training code of the mod-
els. The models are stored with their dependencies. This allows repeatability and
reproducibility of the machine learning projects.

MLFlow [85] uses the concepts of experiment and run. An experiment contains
zero or many runs. A run is a single execution of the training code so that the user
can call the MLFlow API to log metrics, parameters, notes, the ML model itself,
files, etc., to the server. When an analyst trains an ML model, will start a run of
MLFlow, log relevant information about the model to the server, and attach the run
to an experiment to review the results later.

MLFlow offers three APIs that can work independent of each other.

1. MLFlow Tracking : allow to logging metrics, parameters of the experiments
and runs, basically lightweight data.

2021).
15Official Kubernetes website of industry adopters, https://kubernetes.io/partners/#kcsp (ac-

cessed 15 October 2021).

Chapter 4 Diego Alejandro Arenas Contreras 57

Data Science use cases in the Manufacturing Industry

2. MLFlow Projects : is an encapsulation of the project, it saves the description
of the libraries and code of the ML project for reproducibility.

3. MLFlow Models : allow to deploy the ML models to downstream tools, MLFlow
call it flavors, and each different tool is a different flavor.

Analysts can deploy the models stored in MLFlow in several downstream plat-
forms for serving. MLFlow provides integration to deploy the models to H2O, Spark,
MLeap, Tensorflow, etc.

MLFlow presents interesting features such as:

• It works with any machine learning library and is language-agnostic due to its
RESTful API and includes a Python API.

• It is designed to scale out to large organisations.

• It allows to deploy ML models to different tools such as AML.

4.5.2 Azure Machine Learning (AML)

AML16 is a service provided by Microsoft Azure. It requires having an AML
workspace in an Azure subscription. The workspace will be the place to log ex-
periments, metrics, models, create model images, create container compute targets,
and deploy ML models.

AML relies heavily on Microsoft’s Python SDK, specifically on the library azureml.
azureml can control other Azure resources such as Azure Databricks (ADB), Azure
Container Instances (ACI), Azure Kubernetes Service (AKS), Azure Machine Learn-
ing Studio, Virtual Machines, etc. The azureml library is closed source, the API
and functions are well documented, but the user cannot access the source code.

The use of AML is constrained to the use of Python libraries. ML models can
be trained using the user’s local resources compute targets in Azure using ADB or
AKS, for example, and models can be deployed in containers to ACI or AKS from
the model registry.

The training and deployment of models can be done via Python notebooks or
Python scripts. The monitoring can be done via a web interface in the Azure portal,
making it more straightforward for the data engineering team to overview the models
and their deployment.

AML was launched by Microsoft and had good documentation, and it is very
stable. The azureml17 library and the supporting documentation is constantly evolv-
ing.

AML allows the deployment of ML models to several targets. The main two are
ACI and AKS.

4.5.3 Tensorflow Extended (TFX)

The TFX [64] library was recently launched at the time of the implementation
of this project by Google. It is a general-purpose machine learning library. It

16Official AML website, https://docs.microsoft.com/en-us/azure/machine-learning/ (accessed
15 October 2021).

17Official azureml website, https://docs.microsoft.com/en-gb/python/api/overview/azure/ml
(accessed 15 October 2021).

58 Chapter 4 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

encompasses tasks from data transformation to model deployment and is meant to
handle the entire process of ML. TFX is wrapping up a set of useful Google libraries
for ML. This high-level abstraction makes it possible to use these sets of, in the past
independent, libraries together.

TFX is highly based on the tensorflow [53] library. tensorflow is a computing
graph programming paradigm by Google. It is a great resource for neural networks
models. For traditional machine learning models it requires some adaption to the
tensorflow syntax.

TFX presents an entirely new set of tools compared to the current data science
ecosystem of the organisation. To deploy the models will imply using Apache Airflow
or Kubernetes workflows; neither of them is part of the current technology stack and
is not planned to incorporate them at the moment. This was enough reason to stop
exploring the use of TFX as a platform for ML model management.

The TFX platform is different from the tensorflow library. The latter might be
desirable to use in future projects involving deep learning challenges.

4.5.4 Other platforms

Clipper [65] was evaluated but it was still in Alpha release. The functionality it offers
is one of the best ones available in the market, but we think it needs a company
behind to be trusted by the industry. The feedback and model ensembling features
are unique among the tools evaluated.

ModelDB [62] seems to be a good tool. It has good functionality for tracking
the performance of the ML models. But at the time of the evaluation, its repository
did not have changes in the last four months. It was recommended as an option for
model management in Microsoft ML documentation. One of the co-creators in 2016
was Matei Zaharia, the creator of Spark and founder of MLFlow. It is fair to say
that most of the functionality of ModelDB was transferred to MLFlow.

Kubeflow 18. We stopped the evaluation after evaluating TFX. Kubeflow would
have been the next one to evaluate. Kubeflow was added because it makes deploy-
ments of ML models using Kubernetes (a container orchestration platform). The
organisation had no developments using Kubernetes, and this could have represented
the incorporation of a new technology to maintain in the organisation’s technology
stack.

4.5.5 Interpretability

Subjects such as interpretability and explainability are gaining importance among
the ML community. It is expected that models provide explanations of the results
they produce. There is a more significant concern in this regard when algorithms are
scoring people. We’d argue that adding explainability to the results of predictive
models used in the manufacturing industry can add value to the business. For
example, explaining why an anomaly is detected could help better understand how
customers are using the device and, at the same time, will drive insights about the
design of the mechanisms the user uses.

We expect that the ML models deployed in a production environment are inter-
pretable. A human should understand the impact the input variables have on the

18Official Kubeflow website, https://www.kubeflow.org (accessed 15 October 2021).

Chapter 4 Diego Alejandro Arenas Contreras 59

Data Science use cases in the Manufacturing Industry

result from a model. This is not a compulsory requirement, but it is a desirable one.
Analysts could provide explanations to the technical teams of why an anomaly has
been detected.

The use of an interpretability framework could benefit the team as we deliver
and support other business areas; this could engage even more the users of the ML
models. It also could help to understand why some assets present potential failures.

As the number of machine learning models grows, it will be more critical to
explain their scoring. We should avoid implementing models as black boxes. With
zero or minimal knowledge of how the model or the algorithm works and then use
them in production, this will potentially increase the hidden technical debt [52] of
the machine learning process.

We surveyed three libraries: LIME [61], SHapley Additive exPlanations (SHAP)
[71], and Aequitas [81]. The Sequential Feature Explanation (SFE) [90] for time
series data was included in the readings but not tested due to time constraints in
the project.

LIME [61] can be used for the explainability of any classifier. LIME creates
local decision tree models to explain how the studied model makes decisions. The
SHAP library has a more general approach but only provides single point expla-
nations and contains the LIME algorithm with other algorithms to explain neural
networks (DeepLIFT). Aequitas serves a different purpose. It can tell if a feature
has misrepresented values if there is bias in the data.

4.5.6 Coding Guidelines

The recommendations presented in this chapter come from internal practices of the
data science team of the organisation, for example, in the use of a Take on document
at the beginning of the projects. Another example from experience is framing the
data science question, as it has been the standard practice for each EngD project
that started framing the problem in a question that needs further exploration and
experimentation. The documentation process and folder structure for data science
projects come from two primary sources: the Team Data Science Process19 created
at Microsoft and the Cookiecutter Data Science by DrivenData20.

As a first step, completing the following checklist at the beginning of any project
is recommended:

• Define the goal of the project. Frame the objective of the project as an open
question to be answered with the project.

• Identify the data sources for the project. Assess the existence of the necessary
data internally or externally (requires data collection).

• Is the data available validated by the stakeholders of the project? This should
be a milestone to move forward with the project. Analysts should do no work
with data that is not approved or inconsistent with the operational systems
or business reports unless there is explicit approval from the project’s stake-
holders.

19Official documentation website: What is the Team Data Science Process?,
https://docs.microsoft.com/en-us/azure/architecture/data-science-process/overview (accessed
17 August 2022).

20Official documentation https://drivendata.github.io/cookiecutter-data-science/ (accessed 17
August 2022).

60 Chapter 4 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

• Create a code repository for the project with folders: documentation, note-
books, code and tests. Add the files: README.md, charter.md, and exit report.md.

As part of the evaluation of tools, we considered it relevant to recommend good
practices to follow in developing machine learning models. We recommended a
machine learning process to develop models. The process is presented in Figure 4.1.
We explained what tasks should happen in each one of the phases of the machine
learning process:

• Exploration. Description and profiling of the data to be used in the project.
Data provenance is desirable (know from where the data is coming from and
the process until the current state).

• Preparation. Data cleaning and data transformation of the variables. This
is a two-fold process to prepare the data for the training step of the machine
learning models and create a repeatable process to be embedded in the pipeline
of the project, so when new data arrives, it can be processed by this code and
then scored by the model.

• Training. Depending on the type of problem, the analyst can select the
algorithms and techniques to approach the problem. This is an iterable phase
and may require going back to data preparation to get better data.

• Evaluation. Once the models are trained, there must be a way to decide on
better models. This is done with performance metrics depending on the type
of problem. There are many performance metrics to choose from. For clas-
sification problems, it is useful to have the confusion matrix and the model’s
lift curve and the accuracy and recall of the models. For regression, a loss
function would be sufficient.

• Selection. Model selection is based on the metrics computed during the
evaluation of the models. The analyst will want to select a model for good
performance but might include other criteria such as interpretability (if the
problem requires it), computation power needed to score new data or retrain
the model, etc.

• Deployment. The model deployment consists in making the model available
for scoring new data. This is called serving the model. There are two main
ways to deploy ML models. Batch scoring, where new data is scored in batches
at once by a version of the model, this process is offline, and the user gathers
the data first and then applies the model to the data and gets the results. The
other way is online scoring, usually deploying a web server wrapping up the
model with a RESTful API to communicate with it. The user will send the
data as a message to the server, the server will process this incoming new data
and return the result of the model.

• MLFlow. This is the tool for tracking performance metrics, model param-
eters, files and the ML models. It is a centralised server able to store this
information about the models.

Git

We strongly recommended familiarity with Git for versioning code. Any approach to
DevOps or DataOps approach should ensure the skill development of code versioning

Chapter 4 Diego Alejandro Arenas Contreras 61

Data Science use cases in the Manufacturing Industry

of the team members. We prepared an internal tutorial about code versioning for
the data science team as part of the activities of this project where we introduced
the philosophy of code versioning, presented the most common commands used to
work with Git and presented a workflow for collaborative work on code repositories.
We shared resources to learn more about the work with Git.

The structure of the repository may very from project to project but some fold-
ers and documents should be expected to have consistency in the development of
machine learning processes:

• A code/ folder containing all the source code used for the project. In this
folder we can create experiments/.

• A data preparation/ folder.

• A training/ folder.

• A deployment/ folder.

• A documentation/ folder with all the relevant information for users and stake-
holdes.

• A notebooks/ folder. Most of the exploratory work happens in notebooks so
this way we can track the interactive part of the process. It is separated from
the code/ folder because the work in notebooks is often more exploratory and
open ended, if a notebook becomes the final version it should be moved or
created in the code/ folder.

Machine learning development

We added recommendations and ideas to the development guidelines. We thought
of the scenario when an analyst starts a new machine learning project. We added
checklists to follow to gain insights from the data sources of the project [52], [82],
[68].

We suggested to create a data dictionary for the data used in the project. The
data dictionary should be updated every time new data is added to the project. This
could lead to a data catalogue or to feed the enterprise data management strategy.

There are several steps for data exploration and this can be carried on in a
modular way. The key to data exploration is to start answering simple questions
such as what, how many, how much, where, when and interrogate the data. We
made the distinction of analysing discrete and continuous variables, and we also
made suggestions about univariate and multivariate analysis.

For univariate analysis we recommended to consider separate analysis for con-
tinuous variables, discrete variables and time series data. Continuous variables are
often associated with numeric columns and/or real numbers. Discrete variables are
associated with string values or they are also known as categorical variables. They
take a finite number of values. And time series data is often columns of the time, date
or timestamp data type. For multivariate analysis we recommended to run a cor-
relation analysis and analysing the dependent variables against the target variable,
the variable that we want to predict.

For example, in univariate analysis the aim is to summarise the content of the
variables to gain understanding about the problem. For continuous variables in the

62 Chapter 4 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

data sets the analyst could plot a histogram and a boxplot of the variable. A graph-
ical analysis helps to understand the distribution of the data. Also computing some
statistics could help too, statistics such as the mean, median, variance, standard
deviation, maximum value, minimum value, percentiles 1%, 2.5%, 5%, 10%, 25%,
75%, 90%, 95%, 97.5%, and 99%. The covariance matrix to check linear association
between variables. A covariance equal zero if the variables are independent.

For discrete or categorical features we recommended to compute the frequency to
understand the distribution of the values of the variable, what are the most frequent
values, how many unique values the variable contains.

For time series data we recommended to plot the tendencies of the variable.
Group the data by day or month and plot the tendency of the the data and counting
the number of records that are grouped per time unit. Identify when was the last
data point in the data set, what is the span of time that the variable contains data,
etc.

After the data exploration phase a summary report should be created and shared
with the stakeholders. Early findings should be shared early in the process.

Data modelling

There are several ways of classifying the type of problems in machine learning. One is
to divide the problems and methods in supervised learning, unsupervised learning,
online learning, and RL. Often, companies work with the first two types of ML.
Deep learning techniques can be classified under supervised, unsupervised and RL
methods.

In supervised learning, we find two main subtypes of problems: classification
and regression problems. Classification is when the target variable has discrete
values. Regression is when the target variable is continuous. We find three main
techniques used in unsupervised learning: clustering analysis, correlation analysis,
and association rules.

It is crucial to frame the machine learning project as one of these types of prob-
lems. Once we have formulated the problem, we can suggest techniques used to
solve these subtypes of problems. Some problems will instinctively be classified into
a category, but we could frame it in a different class to solve it. For example, the
prediction of the contract value is a regression problem. Still, we can frame it as a
classification problem by predicting the contract value will be greater or less than
a threshold. We want to do this because a binary problem is often easier to model
and solve.

Regarding the target variable in supervised learning problems, it should be clear
what it represents, what it measures, and the domain of the values it can take.

Documentation

The documentation is crucial for any project. It facilitates communication with
users and stakeholders. It makes more straightforward the maintainability of the
project.

We suggested writing all the documentation of the project as markdown files and
as part of the repository. A machine learning or data science project documentation
should include information about the system architecture, data dictionaries, reports
about data exploration and modelling, planning docs, information obtained from

Chapter 4 Diego Alejandro Arenas Contreras 63

Data Science use cases in the Manufacturing Industry

a business owner or client about the project, the presentations prepared to share
information about the project.

4.5.7 DataOps

DataOps is a concept derived from merging DevOps and the roles of data profes-
sionals such as data scientists and data engineers. DevOps is the concept of putting
together software developers and the people from operations who care for the soft-
ware once it is deployed in production.

DataOps is characterized by developing data projects in an agile way. Using
task management systems to track requirements and maintaining a backlog of tasks
sorted by priority. Using git repositories for code versioning. Testing and deliver-
ables are different in ML projects if we compare them to software development. The
testing phase will often test the deployment of a web server from where the final
model will be served or test infrastructure deployment for processing data in batch
mode.

The concepts involved in DataOps are attractive to implement in agile teams
because it allows shortening the delivery times of data products.

4.6 Evaluation

In practice, all the evaluated technologies made use of container technologies in one
way or another. The most common use was to put the models into containers with
all the required libraries to query the models and maintain communication through
an API.

Clipper would be useful when real-time serving is critical, where one problem is
the interactive serving demand of different workloads.

Standardising the deployment with OpenML, PMML, PFA, or ONNX add addi-
tional overhead to the development that can be avoided if these steps of compatibility
or exchangeable formats are not a requisite in the first place.

TFX is highly centred around the TensorFlow library for graph computation.
TensorFlow is used by models using neural networks, but using it with traditional
machine learning algorithms adds an extra difficulty because the analyst should
adapt the algorithms to the TensorFlow syntax. The use of TFX would require
to include at least two new tools to the current toolbox: Apache Beam to coordi-
nate executions of tasks and Kubernetes or Apache Airflow to serve ML models.
TFX controls and provides APIs to execute, but it doesn’t offer infrastructure for
processing.

MLLib is commonly used to train ML models and the exporting the models to
a format that the analyst can use to serve the models such as MLeap21 or Python
functions if the model was trained with the PySpark API.

Concept drift [28] is something relevant to consider. The issue is that the models
will decay their performance over time after being deployed in production. There
are alternatives to avoid this problem. A closer look into this problem would imply a

21Official documentation of MLeap, https://combust.github.io/mleap-docs/ (accessed 15 Octo-
ber 2021).

64 Chapter 4 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Service Price

AKS ˜$100.317/month26

Container Registry ˜$18.676/month
Block Blob storage ˜$0.0644/month
Key Vault $0.03/10,000 transactions

Table 4.1: Table with Azure services and price for AML

small project. From this project, alternatives are suggested, such as periodic retrain-
ing of the ML models. Also, building a periodically scheduled pipeline can evaluate
the performance of the model on new data. MLFlow can help with monitoring
candidate models.

4.6.1 Security

MLFlow has no security implemented as part of the platform. It depends on the
security of the infrastructure where it is installed. The recommendation is to use the
MLFlow version that comes with ADB. That way, the security relies on the access
ADB in Azure.

AML has high and several levels of security. It requires a valid account with
access to AML workspace in Azure; then, when every new logging in, it will ask for
a code provided by the azureml library that should be input to Azure, only then
the user will be able to use the /textitAML and Azure resources.

4.6.2 Cost

A version of MLFlow comes with ADB that is already part of the organisation’s
tools to be used at no extra cost. MLFlow is open source, and it could be installed
in a standalone server to start using it.

The pricing of AML is per use. It uses Azure Kubernetes Services (AKS)22 to
deploy ML models and additionally Azure Container Registry23, Block Blob stor-
age24, and Azure Key Vault25. The Table 4.1 contains estimated prices for AML
usage.

4.6.3 Recommendation

After evaluating different tools for machine learning management and libraries and
platforms for specific ML tasks, the proposal uses two platforms together. The
platforms have minimal overlapping, and the combined benefits from both tools and
the main gain are the flexibility in the development and deployment of ML models.

MLFlow can be used at the training phase, and the analyst could use it for
tracking metrics, parameters, files, and ML models logging the information about
the candidate models, and AML can be used to deploy and serve the selected mod-
els to Azure infrastructure which can be ACI (Azure Container Instances), AKS

22https://azure.microsoft.com/en-us/pricing/details/machine-learning-service/
23https://azure.microsoft.com/en-us/pricing/details/container-registry/
24https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
25https://azure.microsoft.com/en-us/pricing/details/key-vault/

Chapter 4 Diego Alejandro Arenas Contreras 65

Data Science use cases in the Manufacturing Industry

Figure 4.1: Workflow of a machine learning project using MLFlow and AML.

(Azure Kubernetes Service), ADB, or VMs (data science virtual machines).

We present our suggested process to develop and deploy machine learning models
in Figure 4.1 using MLFlow and AML. The training phase involves data preparation,
training, evaluation, and selection of the models and relevant information be tracked
with MLFlow. Then, the selected model can be deployed using AML to AKS or
ACI.

Some of the reasons for this recommendation are:

• MLFlow is a flexible library and programming language agnostic platform. It
has a well documented and simple Python API.

• MLFlow is open source and developed by Databricks. It integrates very well
with Azure Databricks (ADB) that provides an MLFlow instance with its
services.

• A migration of MLFlow servers will be transparent, as the user needs to change
the URL of the new server and the logs will be sent to the new server.

• MLFlow Models allow to deploy the models in Azure infrastructure and many
other downstream platforms for serving models.

• AML has the UI inside Azure, making it easy to monitor by the Data Engi-
neering team.

• AML uses Microsoft’s Python SDK to control the aspects of deployments.
Deployments could be controlled by code in the repository.

• AML integrates very well with other Azure services.

• MLFlow won’t impact the way we write code as a few lines should be added
to track metrics, parameters and the models (as we saw in the MLFlow demo)

• AML will extend a little bit the code as a call to the API should be added to:

– register the model

– create an image for the model

– optionally create a Compute resource to batch process new data

– optionally deploy the model to AKS or ACI

Some of the reasons for not using MLFlow alone or AML alone:

66 Chapter 4 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

• MLFlow depends on other platforms to deploy the models. It is an external
library to manage the lifecycle, but it doesn’t offer processing or deployment
capabilities but connections and integration to the most used platforms for
deployment. An alternative would be to use Clipper.ai for deployment together
with MLFlow

• AML is constrained to Python models, so flexibility is lost by using it for the
training phase.

• AML is restricted to Azure platforms being ACI or AKS the main ones.

MLFlow could be beneficial to compare and track relevant data of ML models at
the training phase. The analyst can use it to standardize the way of model evaluation
and selection. The use of AML could be beneficial to deploy ML models to AKS
or ACI. Currently, the five models in production can be managed by scheduling
ADB notebooks. AML could be used in the future as a sound solution to scale the
deployment of ML models.

Chapter 4 Diego Alejandro Arenas Contreras 67

Chapter 5

Analytics repository for telemetry
data from IoT projects

Summary

This project presents the design and implementation of an analytics database for
telemetry data. This database should receive data from generators and other types
of devices deployed in site projects worldwide. A use case for this project is to
implement a set of alarms to prevent failures in machines and a machine learning
model.

5.1 Background

IoT projects are factors of the increasing volume of data generated around the world.
The promise of remote monitoring of assets becomes a burden when installing, trans-
mitting, and then maintaining the solutions.

This chapter describes an end-to-end proof of concept project to receive and
analyse telemetry data coming from sensors from machines deployed worldwide in
remote project sites.

For any IoT project, we need many components in place before analysing any
byte of data. The sensors are deployed and configured to collect the data. They are
connected to a system that receives the data in the same location as the sensors.
The system that controls and collects data from the sensors requires to be operative
24/7 in the project site; most likely, it will require additional storage and backup
systems to operate. The data from the monitoring system will require a network
to transmit the data, 2G, 3G, 4G, 5G, satellite, internet, etc. The type of network
imposes constraints on speed and volume that can be transmitted and cost. On the
other side, it is required to have a data broker, a platform able to receive all the
incoming data packages and assure there is no missing information, and it is able to
process them. After the data broker, a permanent storage platform like a relational
database or No-SQL database is required to serve the analysis. A data warehouse or
a data lake solution. A platform or framework to support the data the data pipelines
or the data movements between the remote sites with the sensors and the monitoring

68

Data Science use cases in the Manufacturing Industry

system and the repository where the data will serve the analysis. Finally, a platform
to provide access and computing power to process and build analysis using the sensor
data. Additionally, some solutions such as predictive maintenance machine learning
models will be built and deployed to infrastructure monitoring the new data.

Data problems may arise if the business wants to analyse tendencies, comparisons
between different locations, project sites, or the same asset model deployed to other
customers. When the data is in data silos, data integration and time opportunity
are the main risks for successfully implementing this kind of project.

The unique nature of the operations of an organisation generates value for this
data. There is no doubt that there is potential value in analysing its own data.
There are many ways to learn and improve from analysing this data collected from
the fleet’s operation and multiple customers.

5.1.1 Data Silos

Companies with multiple data sources sooner or later face the problem of managing
their data. It makes sense to build an ad-hoc solution when the data is only used by
one area within the organisation. That is how data silos are created inside organi-
sations. Problems start to arise when the data is required by other departments in
the organisation.

One of the problems of maintaining siloed data sets is the high cost to integrate
and analyse data. Any analytical question will become in a one-shot analysis. Any
updates for that analysis will require collecting the data again and the many people
involved in the process. A slightly different analysis using the same data sources,
let’s say to add an extra column from the data sources, will require to modify every
data source and reload the data for analysis. This process is not sustainable over
time due to the number of resources needed to make it work.

The solution is a central data repository. A solution that can collect and integrate
the data from multiple sources into a data model accessible to analysts and develop-
ers to build analysis and machine learning models using this data. We will explain
our solution and architecture in this Chapter, but for more details, we presented a
similar architecture in Chapter 3.

5.1.2 Description of the Problem

The projects of the Power Solution line of business stores their data locally in in-
dustrial computers installed on the project sites with the monitored assets. They
use Supervisory Control And Data Acquisition (SCADA) [16] systems to monitor
the operations in the project site. SCADA systems are control architectures that
provide a standardised framework for high-level supervision of the machines and
sensors. SCADA systems communicate with the sensors and interface with the con-
trollers and actuators of the industrial system. The SCADA system in the project
site collects and stores the data locally.

Data locality is optimal from a project site perspective because it minimises the
data that needs to be transited outside the project site and efficiently maintains the
system. From a company-wide perspective, it would be better to have visibility of
the all the projects, if possible, and asset performance from a single data repository.

Currently, the Rental Solutions line of business provides a service where rented

Chapter 5 Diego Alejandro Arenas Contreras 69

Data Science use cases in the Manufacturing Industry

assets can transmit telemetry data to a central database making it simple to monitor
and analyse them. The in-transit data is managed by a third-party provider and
making it available to the organisation granting access to a telemetry database.
The data from that telemetry database is ingested in the data warehouse and data
lake of the company from where it can be analysed by analysts and data scientists.
This process allows the analytics team to compute analysis and create proactive and
predictive alarms.

The telemetry database used by Rental Solutions described in the paragraph
above was used for the projects described in Chapters 7, 8, and 9.

This project implements a proof of concept for the Power Solutions line of busi-
ness. Enabling the storage, analysis, and computation of the data from assets that in
the past were controlled locally from within the project sites. It presents the design
and implementation of a database to store the messages generated in the SCADA
systems and a pipeline to update the data models, and a way to run proactive alarms
using the database and framework.

5.1.3 Proactive and Predictive Alarms

For this project, a proactive alarm is a single threshold trigger. It is defined by
a signal to monitor, a threshold value, and a time interval, and an instruction for
above or below the threshold. If a given signal remains above or below the threshold
for more time than the defined time interval then the proactive alarm should be
triggered and inform other systems and the relevant people about its occurrence.

For this project, a predictive alarm is a multi-variate analysis created with a
machine learning algorithm or heuristic to spot anomalies or unexpected behaviour
of the signal. Predictive alarms often take more time to develop and validate. They
require a training dataset from where to draw conclusions about the signal.

Both proactive and predictive alarms are based on domain knowledge from ex-
perts and implemented by data scientists. People who monitor the machines’ perfor-
mance led and prioritised the development of new proactive and predictive alarms.

The alarms created are based on the needs of the business and stakeholders.
Proactive alarms are less expensive to implement than predictive alarms. Proactive
alarms can prevent failures before the predictive alarms. Both types of alarms may
present a high rate of false positives in the early stages of development. Predictive
alarms will require more supervision and monitoring after deployment as the results
can be dynamic. Proactive alarms are simpler as they only need what if scenario
analysis that can be computed from historic data.

So far, most of the alarms of the company are for rented assets. This is not
the case for assets deployed in long term projects, where a customer will use the
machines for months or multi-year projects.

The definition of success for this project is:

1. The implementation of a database that can receive all the data generated in
project sites.

2. The implementation of the ingestion process to collect and transform the in-
coming data into a table readable format for data analysis.

70 Chapter 5 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

3. A set of proactive alarms is implemented on top of the analytics database.

4. A set of predictive alarms can be implemented on top of the analytics database.

5.2 Problem Statement

There are many options in the market to implement architectures to analyse sensor
data. Most of the solutions will include a database for persistent storage and the
use of the SQL language to query data sources and in-transit data; some program-
ming language such as Python, R or Julia for pre-processing or transforming the
data; some of the popular libraries for machine learning and data engineering of
these programming languages; platforms to process massive volumes of data such as
Apache Hadoop, Apache Spark or similar; and the decision of hosting the solution
in a cloud platform, in an on-premise infrastructure, as an hybrid solution, or as a
multi-tenancy solution.

The question is, can we design and implement an analytical database for time
series data processing and monitoring alarms that integrates with the current data
pipelines of the company?

5.3 Architecture Design

This project was implemented using data from a mining project in Africa with
around twenty machines deployed on site. The project started with the design of the
database and the data transformation processes to move the data into the database.
This EngD project assumed that other on-site projects would send messages in a
similar format and syntax containing similar information.

This solution considered multiple architecture components and had to consider
some constraints1. First, we want a modular solution to improve the building com-
ponents independently from other components in the architecture. A similar ap-
proach to modular design is explained in Chapter 7 to design the deployment of an
estimation model.

In both designs considered the principle Plan to throw one [design] away from
the Mythical Man-Month book [10]. Without assuming that a first design could be
changed in the future would have put more pressure on the delivery, but as we were
expecting an evaluation and potential refactoring or redesign, it helped the quality
of the solution delivered. Developing this mindset was helpful because we re-design
the database and the data pipeline to update the data model.

Scalability and maintainability were also considered for this EngD project. The
solution should be able to add data from more project sites without impacting the
data pipelines’ performance or the data processing tasks. And it should be clear
how and what to modify in the project for future requirements.

The next step in the design is to choose the technology stack for the project. As
it is a new project implementing something that is not in the current stack, we need

1A technology constraints for this project was the use of a big data processing platform in the
cloud in the cloud provider of the organisation. This constraint dictated the selection of Databricks
on Azure as the platform to implement this EngD project.

Chapter 5 Diego Alejandro Arenas Contreras 71

Data Science use cases in the Manufacturing Industry

to be careful with the technology selection. We will explain the design decisions in
this chapter.

There are many ways to implement the proof of concept. We are using a combi-
nation of multiple technologies and frameworks.

At the beginning of the project, we considered the current technology stack for
data analytics projects and tried to adapt it in the best way possible to the known
practices. We added a couple of technologies to grow the potential and impact for
the team. For example, for data processing, we used Databricks, which is the chosen
solution for data pipelines and data processing tasks, and we added Delta tables as
permanent storage.

For the data model design, we considered the existing data model for rental
solutions. The idea was to make the data models reusable and that algorithms that
run in rental models could run for power solution models and vice versa.

We designed a modular solution separating data collection, computation, per-
manent storage, analysis, and data pipelines to process and update the data models.
We created the data model from scratch based on the messages generated by the
SCADA2 system and the processes for updating it.

An initial data mapping between the rental solutions data model and the message
tags used by the SCADA system that covered fields used by the machine learning
models for rental solutions was attempted. The mapping was unfinished but it was
sufficient to start the project with a basic idea of the required fields from the SCADA
system. In any case, there is no missing data because the data model was able to
contain all the existing messages from the SCADA system. And a mechanism to
detect changes or new message tags that would be not loaded to the database was
added.

We reverse-engineered the tag messages from the SCADA system to design the
data model for the database, and we aimed to store 100% of the messages received.

After exploring the data, we discarded the alternative solution of storing the
SCADA messages directly into the telemetry database. It was not feasible for mul-
tiple reasons. The messages don’t have all the columns that the rental data model
requires; we didn’t have access to the metadata or how technicians configured the
assets to send the data, so all the complementary information would not be present
in the database, only the signals. The sample rates were different, and there would
have been no context or record to store when it is changed. Also, the units of the
signals were inferred by their ranges, but it is a barrier to store the data in the same
data model.

5.3.1 Architecture and components

To implement proactive and predictive alarms, we need a data model. To update
that data model we needed data processes to move the data from the landing area,
transform it, and load it to the data model. To have a landing area, we needed a
data broker to receive the data messages and store them until they can be moved
to a permanent storage layer. Additionally, we required mechanisms to identify
changes in tag messages and keep the history of the alarms sent to users.

2Supervisory control and data acquisition (SCADA), is a control system architecture used to
operate the machines and plants on-site.

72 Chapter 5 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

The tags used in the messages from the SCADA system are configured on the
project site, and we have little or no influence on the format. We could make
suggestions to implement them in the future. There was no standardised way for
the syntax of the tags, but there was some sort of consistency in the tag patterns.

The first step was to create and connect a data broker solution in order to receive
the data from the project site. We used an Azure IoT Hub.

We planned the project in five sequential phases that are dependant on previous
ones:

1. Exploration of the data generated by the SCADA system.

2. Design of an analytical database that allows queries and data modelling.

3. Design of the data ingestion process.

4. Implementation of the proactive alarms.

5. Implementation of the predictive alarms.

Scalability is an important criterion for the design. Ideally, a project site will
start sending data to the central data repository with no impact on performance for
other project sites. Adding new project sites should be transparent with minimal
configuration on their side. It is expected that the solution will have similar perfor-
mance for one project site as for hundreds of them, considering that the projects and
data collection have reasonable configurations like the ones described for this project.

An alternative architecture that we didn’t test was implementing a time-series
database to analyse and create alarms on top of it and a data visualisation tool to
monitor it. A technology stack like this would have made sense as the data from
the projects are of the time-series type, but we did not have the time to test it. The
suggestion was to start testing a platform like InFluxDB3 with a tool like Grafana4

to visualise the data. Both tools are not in the company’s technology stack, which
was the main reason for not testing them in the first place. The testing of this tool
is suggested as further analysis for this project. The alternatives in Azure is Azure
Times Series Insights5. The Azure option is paid, whereas InfluxDB and Grafana
are open-source projects.

The requirements for this project are similar to the ones presented in Chapter
3 about a streaming analytics architecture. In fact, the purpose of that experiment
was to collect data from multiple assets around the world and being able to analyse
and query the data and also generate machine learning models that use the data.
The streaming analytics architecture suggested three years prior to the start of this
project still makes sense, and the recommendations still hold. We will be using the
same components.

3Official website of Influxdata, creators of InfluxDB, https://www.influxdata.com (accessed 12
August 2021).

4Official Grafana website, https://grafana.com (accessed 12 August 2021).
5Official Azure website of Time Series Insights, https://azure.microsoft.com/en-

us/services/time-series-insights/, (accessed 12 August 2021).

Chapter 5 Diego Alejandro Arenas Contreras 73

Data Science use cases in the Manufacturing Industry

We need a data broker to receive the incoming data. A Data storage to save the
files and documents generated by the processing. A database to query the data for
analysis. And of course, a data processing platform.

Data Broker

A data broker is a system that receives input data and delivers it to other systems
using a certain logic that can be programmed in the broker. A data broker system
allows scaling out the solution. If there is an increasing demand from project sites
to send their data, the broker system will scale adequately to meet the demand.

A data broker will work as an infinite queue of messages. In our case, each
message is a data file transmitted from a project site. The data broker will deliver
the messages to the corresponding storage accounts. For this project, a given data
broker, an Azure IoT Hub6, stores the data in a given blob storage location in a
cloud provider.

Data Storage

The next component of the architecture is where the persistent data will be stored.
There are two instances where storage is required. One is to store the incoming
files from the project sites, and the other is to store the content of the tables of the
analytical database.

The storage is in a cloud provider. The blob storage selected for this project
scales with the demand. It allows to connect and mount the storage from the
processing environment.

The platform for data storage is Azure Blob Storage account7. Technology used
in other data related projects in the company.

Data Processing

The data processing environment allows to explore and analyse the content of the
files received from the project sites. It is the computing engine that data scientists
can use to run analysis on the data. It is also used to design the ingestion process
for when the data needs to be loaded to the database in an incremental way.

The data processing platform is Azure Databricks. Databricks is a solution
provided by the company with the same name. It offers an enhanced version of the
Apache Spark[45] platform. Azure Databricks is the current data platform used by
the data science and data engineering teams at the company.

Database

The database engine selected for this project is the Delta storage solution. Designed
by Databricks and open-sourced and donated to the Linux Foundation8 in 2019.

6Official Azure IoT Hub website, https://azure.microsoft.com/en-gb/services/iot-hub/ (ac-
cessed 25 August 2021).

7Official Azure Blog Storage service website, https://azure.microsoft.com/en-
gb/services/storage/blobs/ (accessed 25 August 2021).

8https://www.linuxfoundation.org

74 Chapter 5 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Delta storage[92] is a file system that provides ACID transactions. An ACID
transaction is a common feature found in relational databases. It is the bare min-
imum for a system to be called a relational database, but it is not something that
distributed file systems offered until now. What was common in file systems is even-
tual consistency. That the system will eventually be in sync in all its partitions and
replicas.

Eventual consistency follows the CAP theorem[19],[17]. That means that you
can expect two out of three of the following requisites: Consistency, Availability and
Partition tolerance at any given time and that the third will eventually be fulfilled.

The Delta Project was pretty new, just launched and open-sourced when the
project described in this chapter started. The decision to use it was because this
is a proof of concept project, so we are allowed to test new and potentially useful
new platforms and also because it presented some features that can be beneficial for
data processing projects. For example, Delta has an off the shelf way to update data
incrementally that makes the data integration process efficient. It also abstracts the
handling of the distribution of the data in the clusters.

5.4 Benefits of a single data repository

There are multiple benefits in transmitting the data to a data repository and, for
example, generating statistics across different project sites. Aggregating data from
dozens of sites using hundreds of machines would allow a better understanding
of how the assets are being used and, in the future, to profile the project sites
and customers by actual usage of the assets. The comparison of workloads among
assets and customers would allow identifying differences in geographic locations and
workloads of the assets. It would enable the generation of knowledge for preemptive
maintenance of the machines.

Accessing the data generated on remote project sites would allow the company
to profile the usage of the machines, the type of project sites, and finally, the type
of customers. This understanding would allow to prevent failures and improve the
maintenance cycles for each machine type and model. Alarms could notify about
critical events before reaching critical levels in the workloads. The analysis of project
sites represents new knowledge for the company that so far has more knowledge
about the machines used in the rental business, focusing more on short term con-
tracts that are more numerous.

The advantages of having the data available in the Datalake are many. The data
will be ready for analysis; analysts will have a single source of truth to generate
results; solutions can be scalable. Adding more data sources is transparent for the
users, and more data in the system can only enrich the analysis.

5.5 Data Model Design

Designing an end-to-end solution means thinking ahead and about the different
components of the solution. It also means to prepare processes for when the as-
sumptions considered at the beginning of the project may change—creating policies
to deal with expected and unexpected changes.

Chapter 5 Diego Alejandro Arenas Contreras 75

Data Science use cases in the Manufacturing Industry

Figure 5.1: A message generated by the SCADA system in the project site landed in
the IoT Hub and moved to permanent storage in a Delta table in Azure Databricks.
The Body field contains the data from the sensors encoded in base64 format. The
EnqueuedTimeUtc is a timestamp generated by the SCADA system, and System-
Properties contains details of the host system’s configuration collecting the data on
the project site.

We wanted to use the most straightforward data model that can work and sup-
port the project’s requirements. It also needs to scale well if the demand grows.

The data is collected in SCADA systems on the project site. Then that data
collected is transmitted to a remote repository using standard 2G, 3G, 4G networks
or satellite connections from the project site.

Until now, the SCADA data resides only on the project sites. It has not been
integrated nor combined with other data sources into a central data repository.

The process to design the data model was analysing the tags used in the messages.
We reviewed each tag to understand the patterns used to classify the data. We
identify different patterns, and we were able to separate the data used for different
contexts. We also identified the aliases of the machines from the tags, so we had to
use an additional data source to match up the machines’ unique asset codes. This
issue was a recommendation to incorporate the actual asset codes or add a data
source with this information for each project.

5.5.1 The data

The data from the project site comes in messages formatted as JSON9 files. Each
file contains three fields: Body, EnqueuedTimeUtc, and SystemProperties. The data
from the sensors is in the body field and is encoded in base64 as can be seen in Figure
5.1. The EnqueuedTimeUtc is a timestamp generated by the SCADA system and
SystemProperties contains details of the setup of the host system.

The decoded body message has two fields. A timestamp and a values field. The
values field contains a list of dozens and sometimes hundreds of data structures with
four key-value pairs: id, v, q, and t as can be seen in Figure 5.2.

The values of the id key in the values are known as tags in the SCADA system
and identify a unique pair sensor in an asset. The collection of all the id fields
provides a data domain for the data modelling. The design of the database was
based completely on the information gathered from the id field. We also had a list
of all the IDs or tags used in the project, around three thousand ids, but not all
of the possible IDs were reported from the project site. The alias of the asset is
included in the list of tags, that means that the same sensor can be repeated for
each asset in the list. The v field contains the actual value measured by the sensor.
The data type of v could be an integer, real or boolean. The q is a boolean variable

9Official JSON website, https://www.json.org/json-en.html (accessed 12 August 2021).

76 Chapter 5 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Figure 5.2: Example of a decoded body part of three messages. Each record contains
data from several sensors, id is the name of the sensor, v is the value the sensor is
registering, t is the Unix time stamp at the time of the data measurement.

that for most of the data had the value True, but we don’t know what it represents.
And t is a timestamp in Unix time format.

5.5.2 The flow of the data

The data broker, an Azure IoT Hub instance, would receive a message every sixty
seconds from the SCADA system, containing data from all the devices connected
to the project site. The SCADA system is configured to collect a new data point
only if it is different from the previous data point collected. The data received is
stored in an Azure Datalake Storage account. The data received includes perfor-
mance measurements from generators, transformers, weather stations, etc., that are
allocated on the project sites of the customer.

The data is sampled for each sensor based on their sample rate parameter. The
sample rate tells the system how often, in seconds, to get a new reading from the
sensor. The sample rate can condition the project’s viability as collecting too much
data could significantly increase the network and storage costs.

In Figure 5.3 we can see that on the first days of the project, we received messages
of around 80MB because the sample rate was one second. That volume of data
received decreased significantly when the expert user changed the sample rate to
sixty seconds.

The analytical database will be updated every thirty minutes with the new mes-
sages since the last update. The alarms triggers will run every thirty minutes, fifteen
minutes apart from the most recent database update.

5.5.3 Reverse Engineering

The analysis was carried out using Python in a Databricks environment. To design
the database, we analysed the structure of all the id values in the collected messages
plus the list of tags generated from the configuration of the SCADA system.

We reverse-engineered the design of the database from the SCADA id messages.
Reverse engineering is a technique where we try to understand how a system works
from the system’s outputs. In this case, we had the tags of the messages containing

Chapter 5 Diego Alejandro Arenas Contreras 77

Data Science use cases in the Manufacturing Industry

Figure 5.3: Volume of data received per day. During the first days of the project
the sample rate was set up to one second, that changed later to sixty seconds.

information about the system that we want to store in a database. We tried to
understand what is being measured by analysing the tags or ids. This will give us
a good understanding of what tables are necessary for the database. The analysis
of the frequency of the messages tells us how often the sensors are sampled, which
is an essential factor for partitioning the tables.

5.5.4 Analysis of the data source

The database design was an iterative process. A complete revision of the mes-
sages led to the design of the first version of the database. We classified the tags
into subjects that represented entities for an entity relation relationship model that
translated to the database tables. The early design of the database had six tables
to store all the data from the project site: e meter, g data, meas, t1miq, t2miq,
and tx.

Each table had at least two index columns: the asset alias and the timestamp of
the measurement. The columns of the table correspond with the sensor names, so
each sensor had a column to report its values. The meas table is the measurements
table, and it has an extra index column which with asset type as it stores data of
the different kind of assets. i.e., generators, transformers, etc. The other tables were
asset or theme-specific, so they do not require to include the type of asset.

Not all the sensors report data in every message, so the percentage of NULL
values in the columns varies. We observed a pattern of some sensors constantly
reporting values, whereas other sensors were sending fewer data translating this
issue in columns with sparse data. The analysis of sparse data led to a better design
of the database as we used to split some of the tables, a technique is known as
vertical partitioning in the field of databases.

The eleven tables of the final data model are shown in Table 5.1.

5.6 Implementation

We will define some of the terms to explain the implementation process better.
The data broker receives one file every sixty seconds. We also denominate these
files as messages. Each message contains a body field and within the body there

78 Chapter 5 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Table 5.1: Table with table names and number of columns of the tables in the
database.

Table name Number of columns

alm 156
e meter 26

g data asset 9
g data sites raw 6

meas 135
rw 11

scada 7
stat 128
tmiq 14
tx 47

weather 7

is a filed called values. Inside the values field, there is a list of data structures
containing four key-value items that we are going to call sensor reading. So each
tuple (id, value, timestamp) is a sensor reading.

From the analysis of the syntax and structure of the ids, we generated the
database design to store all the information from the messages. We created a
database in Databricks, and we created all the eleven tables as Delta tables.

We used the same patterns of the ids to map the sensor readings to their cor-
responding table. We parse each id to get three pieces of information. We got the
name of the table, the alias of the asset that can be mapped to their unique code
and the sensor that is being reported. The parsing maps each id to a table in the
database and also gets the column name.

5.6.1 Data Engineering

We created different scripts and mechanisms to keep the project updated with mini-
mal manual intervention from an analyst to maintain the project’s data. We created
scripts to create and recreate the database and the tables of the project. This would
be useful; for example, if we would require to move the project to a different envi-
ronment, this script would facilitate the creation of the necessary data structures.
Also, for testing purposes to test the solution in a new environment.

We created two different sets of scripts for the data ingestion. A bulk insertion
script optimised to deal with large volumes of data. It can populate an empty
database in minutes with all the messages stored in the storage account until that
date. This script is optimised to transfer and load larger volumes of data.

We had a second script for incremental updates of the data. Once there is data
in the database, we needed a mechanism to keep the database updated. This process
would run every thirty minutes and takes all the last received messages from the
data storage account and process them to insert them respectively into the database
tables.

The bulk insertion could run after creating the data structures, making available
a full analytical environment in minutes, ready to query the database. The bulk

Chapter 5 Diego Alejandro Arenas Contreras 79

Data Science use cases in the Manufacturing Industry

insertion process is efficient from the processing time point of view. It is possible to
insert all the messages using the incremental updates script, but this is not optimised
for large volumes of data. Both scripts are optimised for their main task.

We created a dashboard to monitor the data ingestion process. The dashboard
uses a table that contains the number of messages received per day and their weight,
as can be seen in Figure 5.4. The table with the data for the dashboard is updated
once a day in the mornings. The number of messages received per day should be
around 1,440 as the messages are transmitted every sixty seconds.

During the project, there were sporadic data gaps. Data would stop arriving at
the data broker for different reasons. We could spot these data gaps using the data
ingestion dashboard by looking at the number of messages received per day. We
also implemented a proactive alarm to notify if we have not received new messages
in the last 24 hours.

Identification of changes in the data

From the data exploration phase of the ids of the messages, we were able to classify
and map each id to a specific column and table of the data model. This exhaustive
process gave us the design of the database. But we are conscious that all the data
available then is not all the data there is. We added a mechanism to the incremental
update process to print out the unknown ids. We identify unknown ids as soon as
they are parsed to send them to the database, but there is no proper data structure
to support them.

Unidentified ids are presented in a counter dictionary to know how many in-
stances of that id are in the data. The analyst then can consult with the business
experts on the meaning of the new tags and if there should be new data structures
or modifying existing ones. Those changes could be added to the next iteration of
the project.

Data Profiling

We ran a data profiling script to understand the status of the tables and how they
have been populated over time. We reused the code from the profiling tool described
in Chapter 2. We used the results of the data profiling to improve the design of the
database. The percentage of null values per column guided the re-design and vertical
partitioning of the tables.

To determine thresholds for the proactive alarms, we run an exploratory data
analysis shared with the expert users to determine the levels at which we should
report alarms. We profiled the variables using statistics: mean, standard deviation,
minimum, maximum, deciles, quartiles, and percentiles .1 and .99. We plotted the
histograms of the sensors under different running conditions when the machine is
running with load, when it is running without payload, and when it is on stand-by.
In Figure 5.5 are histograms of the variables of assets running with a load.

5.6.2 Data Science

This section describes the implementation of the proactive alarms using the data
from the analytical database designed for this project. We will explain how the

80 Chapter 5 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Figure 5.4: Power BI dashboard of the data ingestion process for the project. It
shows the number of messages per day and their weight. We can see a gap in the
data in the last days of April 2020 where data stop coming to the Datalake because
of a problem in the project site.

proactive alarms were defined, a method to standardise the definition of proactive
alarms, the algorithm to execute the checks for proactive alarms in the data, and
finally, the workflow from when data is processed to the end when a proactive alarm
is reported.

We added a table to the database to store the proactive alarms that will be re-
ported. We also designed a process to coordinate the assigning unique ids of alarms.
The coordination is necessary because there are other systems in the company that
are reporting alarms to users.

The proactive alarms need to be reported to the Alarms Management System
(AMS) of the company. The technicians will investigate and follow up on the devel-
opment of the alarms from that system. The scope of this part of the project is to
spot and send the alarms to AMS.

Alarm id allocation

The AMS requires a unique id for each alarm received. This is prone to id conflicts
if more than one process generates proactive alarms. For this reason, we designed
and created an alarm id allocation system that returns unique ids on request. We
identified the alarm types we are generating and assigned a range of numeric ids per
alarm type. This idea is based on the IPv4 address allocation [6].

We created a registry of alarm types used by the data science team. Each alarm
type has assigned a range of ids between fifty and hundred thousand. There is a
mechanism to allocate more ids for an alarm type if it is near its upper limit of ids.
We created a function that receives the type of alarm and an integer that indicates
the number of requested ids. The process will check if the alarm type is registered,
return a list with the generated ids, and update a status table in the database
with the last generated id. We thought of implementing the id request system as a
REST API service. Still, all the alarms are working in the same database system,

Chapter 5 Diego Alejandro Arenas Contreras 81

Data Science use cases in the Manufacturing Industry

Figure 5.5: Histograms of 21 different sensors with data collected only when a
machine is running. These results from the data exploration phase were shared
with experts monitoring the workload of the machines to determine thresholds for
proactive alarms.

so we decided to keep the id allocation system in the same environment and not add
additional complexity in the maintenance of the alarm system.

Proactive alarm definition

We proposed a proactive alarm template to standardise the definition of proactive
alarms. This is a proof of concept project, and there is no precedence for an artifact
like this among the internal resources of the data science projects. The template
facilitates the exchange of information between the expert users and the development
team and makes the definition of the alarms available to anyone in the development
team.

The fundamental elements of a proactive alarm definition include a high andor
a low threshold value and a time. The system should inform the proactive alarm if
the measured signal is above or below the threshold value for more time than the
defined time span.

The following information defines a proactive alarm:

• engine type: The assets are often groups by engine type. This way, we apply
the alarm to all the assets with that specific engine type. It is expected that
the thresholds are similar for assets with the same engine type.

• customer level : A proactive alarm can be tailored to a specific customer in
the case there is an interest to monitor a particular project site. It can be

82 Chapter 5 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

defined for all the customers, or customers in a region, or specific customers.
By default, the alarm applies to all the customers.

• column name: This is the name of the sensor that maps to a column in the
database.

• low value: A lower threshold that is being monitored. It can be NULL if the
alarm only uses the upper threshold.

• high value: An upper threshold that is being monitored. It can be NULL if
the alarm only uses the lower threshold.

• gen running : The machines have three statuses. Running, stand by and turned
off. For example, if the alarm is defined only for when the asset is running, it
will ignore data when the asset is on stand-by.

• units : These are the units of the upper and lower thresholds. It is important
because the sensor could be configured to transmit data using different units.
For example, the temperature units could be sent in Celsius or Fahrenheit.
This field is used for unit conversion if needed.

• time delay seconds : Minimum number of seconds to be checked to notify the
alarm.

• description: The content from this field is sent as a message to the technician
who will receive the notification of the alarm.

If the signal returns to normal levels below (or above) threshold, it reset the time
counter that evaluates the time delay in seconds. The alarms will be notified only
if all the signal values have been consistently above or below the threshold for more
than the time delay in seconds.

Proactive alarms

The expert users in charge of remote monitoring of the assets defined a list of 25
proactive alarms. By default, each proactive alarm is tested on the last two weeks
of available data for that sensor.

The analyst can modify the time range used to evaluate the proactive alarms.
For example, to run what-if scenarios and study how many times alarms could
be triggered in the last n days. Or how many assets would have been activated
the alarm using the current thresholds. An example of this can be seen in figure
5.6. This information could estimate the workload for the technicians receiving the
alarms.

In Algorithm 2 we present the process to generate and inform the proactive
alarms. There is a pre-processing phase to make the proactive alarm process efficient.
We create a data set from the database with only the relevant columns, and we
filter it by customer ids and by engine types required by the proactive alarms. Each
proactive alarm is processed in a subset of the data specific for that alarm. An
alarm checks all the assets of that particular engine in the same run.

Any proactive alarm should be reported only once. As the check for alarms uses
the last two weeks of data, the process could spot the alarm again in the next run.
If an alarm is already in the database, it will not be sent again.

Chapter 5 Diego Alejandro Arenas Contreras 83

Data Science use cases in the Manufacturing Industry

Figure 5.6: Summary of a what-if scenario checking the proactive alarms with a
10-day window of data. QSK50 is the code of the engine model of the asset, and
the results show how many assets would present an alarm for each of the proactive
alarms named after the monitoring sensor.

The way to report the proactive alarms is by saving a JSON file per alarm
containing the information of the alarm. The JSON files will be named as follows
0 ps vod proactive.json, 1 ps vod proactive.json, ..., n ps vod proactive.json where n
is total minus one number of alarms to be reported.

An email is sent to a service account at the end of the proactive alarm process.
That email triggers an Azure Logic App10 that will collect the JSON files and
transfer them to AMS. The proactive alarm process will delete any existing file in
that storage directory before storing new alarms in the next run.

Predictive alarms

We started the work for predictive alarms based on the analytics database using
Python libraries such as fbprophet [83] and sklearn [42], but COVID-19 issues halted
the work during the implementation of the project. It was expected that the tech-
nicians that will receive the alarm notification would return to the office to start
monitoring these new alarms. Still, the lockdown period extended, and then there
were new priorities for the business team sponsoring this project.

10Official website of Azure Logic Apps, https://azure.microsoft.com/en-gb/services/logic-apps/
(accessed 24 August 2021).

84 Chapter 5 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Algorithm 2 Execution of alarms

1: Pre-processing: Generate dataset D with the last two weeks of data and only
with the columns of the alarms to be tested.

2: for alarm in proactive alarms do
3: generate evaluation dataset Dalarm using engine type and customer level
4: evaluate alarm on dataset Dalarm

5: add last triggered alarm per asset in dataset Dalarm to candidate alarms
6: end for
7: for candidate alarm in candidate alarms do
8: if candidate alarm has not been reported then
9: save candidate alarm in new alarms

10: end if
11: end for
12: for new alarm in new alarms do
13: generate json message
14: save new alarm to persistent storage
15: save new alarm to database
16: end for

5.7 Deployment

We deployed the proactive alarms process to a scheduled Databricks notebook that
would run every thirty minutes. We tested the system, and it was ready to go into
the production environment when COVID-19 issues halted the project. This also
impacted the implementation of predictive alarms based on the data of this project.

5.8 Discussion

This project implemented the experimental design proposed in Chapter 3 three years
before the starting of this project.

The end-to-end pipelines and architecture design for this project marked a suc-
cessful implementation of a data science project using exploratory analysis tech-
niques to inform the design decisions for the system better. The planning for this
project considered the existing processes and infrastructure of the data science and
data engineering team.

This project created processes and document artifacts to establish standardised
ways to communicate and configure systems. This project made precedence for fu-
ture projects in the use of good practices in data science, for example, the use of
a standardised way to define proactive alarms or the unique id request system to
coordinate the id allocation of alarm’s id.

A logical step forward in refactoring this project is to include streaming an-
alytics methods to run the alarms. Using the tech stack suggested early in this
chapter or using Apache Spark’s off-the-shelf techniques. This could simplify the
implementation process of alarms.

An alarm that is never triggered does not necessarily mean that the asset has
been running without problems. It could mean that the threshold is at a level that

Chapter 5 Diego Alejandro Arenas Contreras 85

Data Science use cases in the Manufacturing Industry

Figure 5.7: Proactive alarm identified for sensors ExhT5 and ExhT7. ExhT stands
for exhaust temperature. The black line marks the threshold of the proactive alarm,
and the red line marks the instant the threshold has been surpassed for more than
thirty minutes which is the period defined for these alarms.

the values never reaches or that the signal is zero all the time. At the same time, an
alarm that is triggered all the time does not necessarily mean that it is valid; this
could lead to ignoring the warnings that are informed constantly. All these scenarios
need to be tracked with a monitoring system for the alarms.

5.8.1 Further analysis

One of the analyses that can be implemented using the telemetry data is to calculate
the right sample rate per asset. The sample rate determines every how many seconds
a new measurement is collected and stored. The sample rate is a significant factor
in the size of the data sets.

Two risks identified during the project are:

• The tags contained generic names or alias for the asset such as G001 to identify
one of the generators in the project site. It was required an additional mapping
table with the aliases and their unique codes. This information could be
standardised or passed in the messages from the project site.

• How to identify the project site from which the data is being received. This
information was not part of the messages. If more project sites start transmit-
ting data, knowing what assets are assigned to what projects will be necessary.
This issue is related to the identification of the assets with their unique codes
instead of generic aliases.

86 Chapter 5 Diego Alejandro Arenas Contreras

Chapter 6

Aggreko Data Engineering Library

Summary

The Aggreko Data Engineering Library (ADEL) is a Python custom package de-
veloped to handle everyday data engineering tasks. It encapsulates a set of utility
functions for data ingestion from multiple database engines to the data lake. The
scope of the library is the ingestion process from external sources into the data lake.

6.1 Introduction

The Data Engineering (DE) team is in charge of moving and transforming the data
for the information systems to work inside the organisation. From the work of the
DE team, the development of reports and dashboards by the Business Intelligence
team and the analysis and machine learning models of the Data Science team.

The Data Engineering team builds data pipelines to move and transform the
data from source systems into the data lake repository. The data lake is a central
repository with a landing area for the data. It ingests data in its raw format and
also computes data transformations and loads the data using a layered classification
of environments. The three layers for data are bronze, silver and gold. A layer
is another word for environment. The bronze layer has raw data from the source
systems. The silver layer has cleaner and transformed data from the bronze layer.
And, the gold layer has the cleanest data and is combined to serve reports and
dashboards for the business. It is also the self-service layer of the system.

This chapter describes the implementation of a custom Python library of utility
functions and operations to handle and transform data from the source systems to
the raw and bronze layers of the data lake.

We start giving some context to the problem in the section 6.2. We continue
with the description of the problem in section 6.3. The design of the solution is
explained in section 6.4 and how we took different software development elements
to work in the library. The implementation and development process are presented
in section 6.5. Finally, the discussion of the project is in section 6.6.

87

Data Science use cases in the Manufacturing Industry

6.2 Background

This project is in the data engineering field. To understand the context and many
of the concepts mentioned in this chapter, we will present a brief history of the
evolution of the information systems focusing on the data engineering techniques
used over time and defining many technical terms used in this chapter.

6.2.1 A brief history of the information systems

Since the triumph of the entity-relationship model [1] [2] over the network or graph
and set entity representation of data in the ‘70s, there has been an increasing desire
to store and analyse more and more data in relational databases by organisations.
Early on, companies made a distinction between operational and information envi-
ronments. Operational environments have systems that support the daily operations
of the businesses. Information environments have copies of the data (from the op-
erational environments) to be analysed by analysts.

Relational databases were the preferred way to store data, and in the 80’s we
saw apparition of operational data stores (ODS) [12]. ODS were a copy of the
operational environment. The copies were necessary to avoid a performance impact
on the operational systems and allow business people and analysts to query and
analyse their operations’ data. Of course, the analytical power was limited to the
design of the operational data model.

In the 90’s, the Data Warehouse (DWH) [14] [11] was, in some sense, an evolution
from the ODS. The DWH had a structured way to collect and analyse data. It
also created the necessary process for data collection and data transformation to
maintain the DWH updated. The data warehouse provided a stable and accessible
solution for data analysis. It kept historic data, often the last five years or more,
giving access to business users to query the data. The data warehouse data model
is optimised for fast query answering; it is more efficient in retrieving data from the
database than inserting them. The data in the DWH is highly structured and it is
transformed before being loaded into the DWH. Not all the operational data make
it to the DWH, only defined columns of specific tables relevant from pre-defined
analysis.

With the rising of DHWs we saw the rising of the ETL techniques needed to
extract, transform and load the data from data sources to the DWH. ETL is a term
to wrap up the data movement tasks used to feed a data warehouse. Interestingly
enough, there were data transformations before the DWH, but those were called
just data processes or data movements and worked with scripts.

In the 00’s we saw the apparition of massive volumes of data. For the first
time, organisations were able to generate insights from vast volumes of data. The
release of Apache Hadoop based on papers from Google engineers [25] [34], and later
Apache Spark [45] made it possible to process massive volumes of data using clusters
of commodity machines enabling the world of big data that is known to us today.

In 2010 a new concept was added to the ecosystem of data technologies, the Data
Lake. Data lakes are enterprise-wide data repositories that ingest the operational
systems in their raw formats. Data lakes have layers to access the data, refining it
and combine it with the different systems. The top layer of a data lake will have
an integrated version of the data from multiple systems in reports, dashboards, and

88 Chapter 6 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

ad-hoc analysis to generate insights. Data lakes use data pipelines to collect and
transform data. Data pipelines are to data lakes what ETLs are to data warehouses.

A main difference between the data warehouse and the data lake is that the
latter includes the data without transformation in their raw format. Storage space
is cheap nowadays, so this is the way to have timely access to operational data. Data
in a DWH is highly structured, and the ETL process is designed and structured. In
contrast, the data ingestion processes for the data lake are adapted per data source
and often occur with change data capture technologies (CDC).

Later in the 10’s, we saw the use of new techniques in data engineering to catch
updates of operational databases. Change Data Capture (CDC) is now broadly used
to detect updates in the data sources. CDC will be reading the log of a database,
and it will interpret the changes that the database reports to the database log as
the events, and it will inform and sent the changes to the target database.

We see in the future hybrid approaches and multitenancy, using more than one
cloud provider, data stores.

The progress in information systems over the years is that each new technology
that is incorporated into the ecosystem of existing tools, and sometimes replacing
some of them is that it abstract away the complexities of the processes and offers a
more straightforward way to execute the same tasks. That was the case of the ODS,
the DWH, the data lake, Apache Hadoop and Apache Spark, and CDC tools. They
took a process that was doable but complex. They encapsulated away from the
complicated parts for the developer to use off-the-shelf functionalities that before
was limited to the development process.

The design and implementation of a data engineering library pursuits the aim of
abstracting complexities and offering a straightforward way to execute data trans-
formation tasks for the data engineering team.

6.3 Description of the Problem

When the new enterprise data lake environment of the organisation started to get
populated with data from multiple data source systems, the data engineering team
followed a repeatable process to create the data pipelines to keep the data lake
updated from the data sources. There would be at least four notebooks with code
for each new data source to be incorporated into the data lake, containing data
transformations for the bulk and incremental data load.

The data sources are operational systems of the organisation. Each operational
system has its database. To make the information from operational systems available
to the users, it is required to extract the data from their internal databases and
put them into the data lake. The databases are in multiple relational database
management systems (RDBMS), i.e. Microsoft SQL Server, MySQL, Oracle, etc.
Also, there could be various versions of an RBDMS.

The data transformations in the notebooks used SQL and Python language. The
notebooks are separated by the domain of the data transformation tasks. First, a
notebook to create the database and tables. A second notebook for a bulk load of
the data. The third notebook for change data capture. And the fourth notebook
for the incremental load of the data.

As these notebooks started to repeat for each data source system, we foresaw
that maintaining them could become a problem. Any modification would need to be

Chapter 6 Diego Alejandro Arenas Contreras 89

Data Science use cases in the Manufacturing Industry

applied to each notebook of the same type. The effort to maintain the code grows
linearly as a new data source is added.

The copied code to maintain a new data source would often require minimal
modification. Sometimes, the data source would require a customised data trans-
formation, and in those cases, the code is added to the particular notebook that
handles that data transformation. This is a reason to keep the code separated by
the source system and not having a general notebook for all the systems.

Creating similar code for each new data source system triggered the consideration
of creating a custom library that could provide off-the-shelf functionality and be used
and extended for more complex tasks.

The question for this project is: can we design and implement a custom library
that can handle the data ingestion process from multiple database engines into the
data lake, abstracting the complexities of the process?

6.3.1 Benefits of a custom Python library

Having a custom library would reduce the amount of code to be maintained. Re-
ducing the chance of introducing human error into the data transformations and
making the development process more efficient. Encapsulating reusable code min-
imises the repetition code so that any change is introduced once in the code and not
maintained multiple times.

The analyst has more control over the development process and can establish a
workflow to add new functionalities and maintain current ones. All the changes to
the code can be traced and reversed if needed.

Testing is an essential part of software development. Still, when the code is in
notebooks in a cloud environment, the testing is often overlooked because there is
no simple way to test the code from notebooks. It is necessary to incorporate testing
into the code to ensure its quality and maintain the system in live or production
environments.

6.4 Design

In computer science, designing a custom library is a software development task. The
library will be used for data engineering processes, but the implementation will be
treated as a software engineering endeavour. For this reason, we looked into software
engineering modelling techniques for enterprise applications using data.

In terms of requirements for this EngD project, the data transformations of the
data engineering team were implemented in Azure Databricks and using the Python
language.

We looked into three approaches to design and model the library and took el-
ements from each one to model and implement the library. 1) Test-driven devel-
opment (TDT) is a common technique used to design systems that handle data.
2) Event-Driven Architecture is an architecture design that uses the data flow in
the system as input for the components and design. And 3) the Domain-Driven
Design (DDD) approach that leverages the modelling around the knowledge about
the problem. It highlights the relevance of a shared language for modelling.

An event-driven architecture is described in Chapters 3 and 5 where the design of
the architecture was informed by how the data would be arriving and later processed

90 Chapter 6 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

in the system. In this case, it doesn’t make sense to use this approach as the library
is intended to support data engineering tasks, meaning that it would enable an
event-driven architecture. Still, the approach does not make sense to implement the
library.

We used the guidelines from DDD for the design. We added testing to the li-
brary, but after the functionality is implemented and not prior to writing it as is
recommended by the TDD practices.

We decomposed the activities into three main groups to organise and design
the library—first, we analysed the existing code in notebooks and its functionality.
Second, the code structure of the repository. And finally, the team coordination to
collaborate in the development of the library.

We used an iterative process with brainstorming sessions to check early library
designs and where to incorporate the required functionalities of the library. We
used the shared language to distinguish the different components and features. We
established a list of what is needed to be implemented, and we followed it in sequence,
implementing modules of the library one by one.

The library is intended to be used primarily in a Databricks environment but
this is not a constraint for the library to work in any other environment.

6.4.1 Analysis of the notebooks

We analysed over 90 (ninety) notebooks with data transformation code for 12
(twelve) different operational source systems. We identified the different types of
notebooks and the different types of tasks within the notebooks. We can classify
most of the data transformation tasks into one of these four groups:

1. Creation of the database and tables.

2. Bulk load of the initial data.

3. Append new data from the source.

4. Merge data from the source.

The review of the notebooks led to the design of the library in a generative
approach. We wanted to implement all the functionalities that are already pro-
vided using the notebooks, plus the flexibility of adding new functionalities without
impacting existing working code.

6.4.2 Team coordination

This project would have contributions from three members of the team and more
in the future as new features are required. Communication and coordination is key
to the success of the project. Early in the project, we defined how to collaborate,
establishing the tools and libraries for the project and defining the git workflow for
development. We had hands-on sessions to show and practice the implementation
and development process and document them.

We created a git repository for the library, and we used Python as the default
programming language. The repository contains the library’s source code, the code
for testing, and documentation about the inception and design of the library.

Chapter 6 Diego Alejandro Arenas Contreras 91

Data Science use cases in the Manufacturing Industry

We created a second git repository to emulate the file structure of the file system
in the clusters. This would facilitate the testing of the library. The adel-test-data
repository contained samples of the files that we would find in the cluster’s file
system.

We held daily calls in the mornings during the first weeks of implementation and
then weekly calls to update the status of the library.

6.4.3 Domain-Driven Design

In this approach, domain refers to the context and knowledge around the problem
where the problem. DDD uses the knowledge of the problem as a base to model the
solution [26]. Our domain was data transformation tasks performed to ingest data
into a data lake. The DDD process recommends cultivating a shared language so
that the system can be modelled using plain English associated with the technical
terms and functionalities in the project’s scope.

We established a common language to facilitate communication and implemen-
tation. Aubiquitous language helps to translate domain terminology into code.

The terms we use must be unequivocally referring to a specific element in the
data ingestion process. As part of the shared language, we defined two main terms:
data source and data engine:

• data source: Refers to an internal operational system that is used to support
a business process.

• data engine: Refers to the database management system (DBMS) where a
data source is hosted.

These terms are embedded in the library as sets of modules that can handle data
sources and data engines as they were defined. Each data source will have a Python
module in the library, and each data engine as well. A Python module is a file in
the library with the extension .py.

The standardisation of the language contributes to having better communication
among the developers. There were three people involved in the development of this
library. We used DevOps tools for code versioning and agile development.

We took a pragmatic approach to the implementation. We made sure that what
was requested worked well, and we cut the additional functionalities nice to have,
but that was not in the requirements. This way allowed us to deliver quality software
that did what was meant to do.

We used a generative approach to the design. From the review of notebooks, we
documented and created a list with requisites for the library.

One of the issues at the time of the modelling and then in the implementation
was that the development would happen in local computers. In contrast, the testing
and actual use of the library would occur in clusters in a cloud environment. This
affected the way to test the library as some of the functionalities were meant to
use local resources of the clusters. We implemented some strategies to work out
these issues. We created a process to generate the library as a file to be installed
in the clusters. Early on, we connected the local development environments with
the clusters using the databricks-connect library that later on was advised no to be

92 Chapter 6 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

used, so we replaced it with the pyspark Python library.

We followed the single-responsibility principle (SRP) in software development
[79]. The SRP dictates that every component in the software, module, class, or
function should have only one responsibility. This was relevant because it solved
some of the design questions we had. For example, the same function would need to
be implemented for different data engines; should we use a unique function for the
task, or each data engine module should have the function implemented. Using the
SRP, we decided to write the function on each module to solve any particular issue
locally and not affect other data engines.

We suggested a functional programming approach to developing the library fol-
lowing the SRP making use of a ubiquitous language for the project. We can natu-
rally map the data transformations to be implemented to functions; this makes the
functional programming approach sound.

As in any project requiring a design to be used in the future, requirements and
needs are expected to change over time. It is essential not to commit to a specific
design early in the lifetime of a project. Early design decisions often turned out to
be very expensive to maintain over time. The library’s design approach was based
on quick iterations of ideas to select the best design that adjusts to the needs and
offers a way to extend the library’s functionality at the same time. Early decisions
on the design can compromise the functionality of the software.

Based on the experience of the Manning Optimisation project described in Chap-
ter 7. Quick iterations of mock-ups and prototypes with users can provide insights
that otherwise would be more difficult to get. For example, know how we will use
the tool and queries, what aspects are more relevant to the user and get honest
feedback on the tool’s usability.

This project is based on the experience of developing open source libraries [93].

6.4.4 Code structure

The design of the library follows a pattern separating the code in three main mod-
ules: databricks, datasources, and dataengines. databricks corresponds to code to
interact with Databricks’ REST APIs1 to interact with clusters, libraries, and their
file system. The modules in datasources are created to handle each one of the in-
ternal systems, not their database systems but the business processes related tasks;
for example, a data source system that has telemetry data on it some functions
will need to be created to transform the units. There is one module per database
management system in the dataengines component.

The breakdown of tasks then corresponded to one of the previous activities per
data source or data engine. So they can be developed independently with minimal
impact on the overall progress of the library.

The data source modules include features like getting the files with data to be
ingested to the data lake, deduplication of the data that is going to be loaded,
functions to populate and incremental updates of the tables in the first layers of the
data lake, the raw and bronze layers.

1Official documentation of REST APIs, https://docs.databricks.com/dev-
tools/api/latest/index.html (accessed 03 September 2021).

Chapter 6 Diego Alejandro Arenas Contreras 93

Data Science use cases in the Manufacturing Industry

Figure 6.1: Structure of the code in the library.

The data engine modules includes functionalities for five different DBMS. The
features include parsing of .sql files with table structures from the data engines to
create the data structures to ingest the data to the data lake, data type conversions
between the data engine and the data lake table format and vice-versa, among the
specific functions for each data engine.

The library has a configuration file to use parameters such as the cluster names,
database names, environment names, paths in the Databricks file system and other
relevant information. The option of using a table in a database was discussed and
could maybe be implemented, but we are not fond of this option as it relies on an
external source. This means that if the database with the configuration settings is
not available, then the library will be unusable.

We added a utils module where we put transversely helpful utility functions. For
example, functions to read in the configuration file or to change time formats. utils
handles shared tasks among the different data sources and data engines.

We modelled the library using functions rather than an Object-Oriented ap-
proach. This approach facilitates the reuse of code and models behaviour using the
arguments of the functions. We are including typing annotations to the variables
used in functions. We considered that data transformation tasks can be easily trans-
lated to the implementation of functions to perform a specific data transformation
task or decompose into smaller functions.

6.5 Implementation

As more than one person would be adding functionalities to the repository, we
needed to organise the development process by defining the git workflow that we
would follow.

The git workflow consisted in branching out from the develop branch. We estab-
lished the main branch as the official version of the library. We would not modify
it directly but only through updates to the dev branch. We created a development
branch called dev, which we would update by creating pull requests (PR) from fea-

94 Chapter 6 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

ture branches. We would need to create feature branches with descriptive names
depending on the functionality to develop any new functionality. We created a work
item for each feature that we wanted to implement in the library. This way, we can
track the development process using the Azure DevOps platform, where also the
repository is hosted. We created unit tests for the functionalities that we imple-
mented and then created a pull request from the feature branch to the dev branch
to merge our code to the library. We would merge the dev branch into the main
branch less frequently, and once the dev branch contains enough updates to update
the library unless we had to make a hotfix which we would merge as soon the fix
was available.

We created two git repositories. One called adel for the source code of the library
and one for the test data called adel-test-data. The adel repository contained the
source code for the library, and we created a separate repository with testing sample
data for the library. Often, the data for testing is added to the same repository of
the library, but we decided to separate the repositories for two reasons. We wanted
to make a lightweight library to deploy it to clusters, and we wanted to replicate
the file system organisation in the clusters using sample data.

We added a CONTRIBUTING.md document to the documentation with devel-
opment guidelines to facilitate the contribution of more people to the library. The
guideline contains several sections describing the integrated development environ-
ment (IDE) Visual Studio Code2 and how to use it. We choose this IDE for its
integration with Azure, Microsoft’s cloud platform, where the platforms we were
working with are hosted. A list of the Python libraries used for development such
as black3, autoflake4, pipenv5, pytest6, and databricks-connect7. The description of
our git workflow where we are committing changes to the dev branch and creating
issues for each piece of code that we are working on—the instructions to add new
modules to extend the library’s functionality. Instructions of how to setting up the
virtual environment to work locally in the development for then push the changes
to the remote repository. The documentation also contained the most common and
used git commands for familiarity. Instructions on how to run tests to the code.
How to install and deploy the library in Databricks.

We used a versioning system following PEP 4408 with three digits separated by
dots indicating minor changes, significant changes, and breaking changes with the
release of the custom package.

2Official website of Visual Studio Code, https://code.visualstudio.com (accessed 30 August
2021).

3Official GitHub site of the black library, https://github.com/psf/black (accessed 31 August
2021).

4Official GitHub site, https://github.com/myint/autoflake (accessed 31 August 2021).
5Official documentation of pipenv, https://pipenv-fork.readthedocs.io/en/latest/ (accessed 31

August 2021).
6Official documentation of pytest, https://docs.pytest.org/en/stable/ (accessed 31 August

2021).
7Official databricks-connect documentation, https://docs.databricks.com/dev-tools/databricks-

connect.html (accessed 31 August 2021).
8Official documentation of PEP 440, https://www.python.org/dev/peps/pep-0440/ (accessed

31 August 2021).

Chapter 6 Diego Alejandro Arenas Contreras 95

Data Science use cases in the Manufacturing Industry

6.5.1 Testing

We tested the library using the pytest [27] Python library. We created unit tests
for each module. The adel library is installed locally and tested. We followed good
practices for pytest [74].

6.5.2 Deployment

The library must be installed in a Databricks cluster to be used. The functionality
to deploy the library to any Databricks cluster was added to the code using the
REST APIs of Databricks.

Installing the library in a cluster makes the library available to be used from
notebooks so that the analyst could write import adel to use it.

At the beginning of the project, we had a manual process to deploy and install
the library. We would generate a wheel file (.whl) from the library, and we would
manually upload the file into the Databricks cluster and then installing it from there
to make it available for the notebooks.

Later on, we evaluated alternatives to deploy the library to the clusters. We could
use an Azure DevOps pipeline, which means adding a .yaml file to the repository
triggered when we push changes to a specific branch as part of the pipeline to deploy
the library to clusters. Or, we could deploy the library from the local environment
using the REST APIs of Databricks. We implemented the latter, and the former is on
the list of features to be implemented. With the deployment from the development
environment, we have more control over which clusters the library is deployed for
development, testing, or production environment.

We used three REST APIs from Databricks to implement the deployment pro-
cess: the clusters API that handles the start and termination of clusters, the DBFS
API that handles the Databricks files system with calls for creating directories,
deleting, moving, copying or reading files, and so on, and the libraries API to in-
stall and uninstall libraries into the clusters.

The deployment process of the library is as follows:

1. Start the cluster and wait until it is running (clusters API).

2. Uninstall any previous version of the library (libraries API).

3. Restart the cluster and wait until it is running (clusters API).

4. Clean the dbfs-path where adel is should be copied (DBFS API).

5. Upload the latest local .whl file to the dbfs-path (DBFS API).

6. Install the library in the cluster (libraries API).

We added a deployment script that we can use from the terminal. Deploying the
library becomes a matter of using the terminal locally as can be seen in the Figure
6.2 using three parameters: shard, cluster-id, and dbfs-path.

96 Chapter 6 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Figure 6.2: Deployment of the library from the command line. It receives the shard,
the clusted-id and the dbfs-path as parameters.

6.6 Discussion

More than a final finished product, this project established a process to develop and
further expand a data engineering library. We set the foundations to collaborate
and contribute with functionalities, as we understood that this would be a learning
process and new functionalities would be required in the near future.

By setting up the code structure and design of the modules, the testing process
and the development process, we enabled the data engineering team to maintain
and use the library.

The library design followed good practices from software engineering methods
suitable to the requisites for this project. The process to work on the library follows
best practices from the open-source community.

We based the design around a common language and knowledge about the data
transformation processes. We followed the recommendations of the single responsi-
bility principle to implement the functions that will handle the complexities of data
transformations. We modularised the design with the distinction of data sources
and data engines; we added modules to handle the REST APIs with the data lake’s
computing platform. We added a settings module to configure the use of the library
and adding environmental variables. We added testing to the development process.
And we documented contributing guidelines and the deployment of the library.

A library is a piece of software that helps to build other pieces of software. It is a
building block for robust and stable code. A good library design should abstract the
complexities of the development and offer a more straightforward way to implement
the functionalities than doing them directly. The key to usability and design is
the right level of abstraction for the data transformation tasks. We achieved a
sound design by using a shared language that can translate to the implementation
of functionalities.

Chapter 6 Diego Alejandro Arenas Contreras 97

Part II

Applied Data Projects

98

Chapter 7

Manning Optimisation

Summary

This project estimates the number of technicians needed to solve unplanned events
on machine on a project site, given its characteristics such as the number of machines,
their capacity, the air quality in the location and fuel quality.

7.1 Background

There are often two types of projects that use the machines of the organisation.
One mode is short-term projects where the generators are hired for days and maybe
months, and the other is long-term projects where generators and other machines
are allocated for months and sometimes years to a project site location. The Rental
Solutions line of business manages the long-term projects. When a long-term project
is agreed to be executed, one of the necessary tasks is to estimate the number and
qualification of the people that will provide support and maintain the hardware
deployed on the project site. A forecast model was introduced in 2016 to estimate
the number of people needed to maintain diesel machines. That model created by
business analysts is the starting point for this EngD project.

The model estimation created in 2016 was based on the number and size (in
Megawatts) of the machines that will be used on the project site. It is expected to
prevent failures in the devices, and in the eventual case of failure, it is expected to
have qualified personnel to solve the issues on site.

There are two types of asset maintenance: planned and unplanned. Planned
maintenance is a well-known event where a service or procedure is applied upon
the asset and are scheduled based on the number of running hours of the assets or
other metrics. On the other hand, unplanned maintenance is an unexpected event
of failure or similar kind of issue that often requires immediate attention to continue
with the operation of the asset.

The maintenance tasks of the machines are recorded in the database as service
orders. There are specific codes to identified planned and unplanned service orders.

The project stakeholders built an estimation model in 2016, a couple of years
before the start of this EngD project. It was built using surveyed data from the
technicians of projects in South America. The estimation model was built on a
standalone spreadsheet. This format of distribution of the estimation model could

99

Data Science use cases in the Manufacturing Industry

be challenging to maintain and share among multiple users. The estimation model
was built based on data from six projects, and on the surveys of around ninety
technicians that reported estimation times to specific maintenance tasks. With this
data, the team generated a mixed regression model considering the air quality, the
fuel quality, as factors for the model plus the number of machines using diesel fuel
on the project sites.

The estimation model created by the stakeholders applies to a subset of engine
models that use fuel diesel to operate. Other devices use gas, and there are hybrid
machines that use both. Diesel engine models are widely used in many projects,
and that’s why we started with these engine models.

In this chapter, we will use the term solution to wrap up the processes to deploy
the forecast model serving requests from client applications. The solution is the
forecast model deployed and working properly. We also will use the terms estimation
model, the forecast model and headcount model interchangeable.

7.1.1 The current model

The forecast model estimates the number of unplanned maintenances per asset per
week. That number is multiplied by the average number of hours required to solve
the task according to the surveyed data from the technicians’ responses.

The surveyed data from technicians contained the estimation of times required
to solve different types of issues with the assets. The collected data was tabulated
to compute average times to solve the different types of unplanned maintenance.
This tabular data was added to the spreadsheet and queried using vlookup calls.

The model was based on data collected from six projects in South America
from 2016. Estimating the number of hours is computed based on a survey sent to
technicians to report their best assessment of the time needed to solve the issues
surveyed.

The current model estimates the number of electricians, mechanics, and general
crew needed for the project site. It considers factors such as the air quality and fuel
quality on the project site and whether or not the project requires personnel to be
available 24/7.

7.1.2 The Regression Models

The forecast model uses three regression models showed in 7.1, 7.2, and 7.3 trained
with surveyed data from a sample of project sites.

The Excel file with the forecast model contained 22 sheets with tabular data
and calculations to compute the estimation. One of the sheets was used as the user
interface interacting with the models. The user could input parameters with project
data on the top part of the spreadsheet and then see the results in the bottom part
of the same spreadsheet. The results were calculated using nested formulas in the
Excel document. The formulas jumped between sheets to get the calculations and
tracked them all to understand the workings of the current forecast model.

The model uses four input variables:

• Rh/Set/Day: Running hours per set or device per day.

100 Chapter 7 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

• SMR: Service, maintenance, and repair. Number of hours to schedule a regular
maintenance.

• Redundancy: A percentage of the total power provided on the project site.

• Megawatts: The total amount of Megawatts that needs to be supplied by the
project site.

Additionally, the user can input other parameters that are used as factors to
present the results. The other parameters are:

• Air quality: Three levels: high, medium, and low.

• Fuel quality: Two levels: high and low quality.

• Redundancy: Percentage of the size of the project in MW that need to be
additionally ensured to be present in the project site.

• 24/7: Whether or not the project site requires people working twenty four
hours per day, seven days per week.

The first model 7.1 estimates the number of unplanned service orders number
ten (SO10) that a piece of equipment will have per week. Where x1 is Rh/Set/Day,
x2 is average SMR, x3 is redundancy, and x4 is the number of Megawatts hired.

SO10PerSetPerWeek = −0.1075 + (0.00626 ∗ x1)

+ (0.000020 ∗ x2) + (1.789 ∗ x3 + 0.001883 ∗ x4)

− (0.000000 ∗ x2 ∗ x2)− (0.000076 ∗ x2 ∗ x3)

− (0.0430 ∗ x3 ∗ x4)

(7.1)

The second model 7.2 estimates the number of mechanic hours needed per service
order.

MechanicsHoursPerSO = −0.862 + 0.000167 ∗ x1 + 0.0289 ∗ x2 + 32.8 ∗ x3

− 0.0986 ∗ x4 + 86.0 ∗ x3 ∗ x3 + 0.000005 ∗ x1 ∗ x2

− 0.002932 ∗ x1 ∗ x3 − 1.170 ∗ x2 ∗ x3

+ 1.967 ∗ x3 ∗ x4

(7.2)

And the third regression formula 7.3 estimates the number of service crew hours
required per service order. Service crew help with the operation of the project site
but they are not highly specialised like the electricians or mechanics.

ServiceCrewHoursPerSO = 0.677 + (0.0000016 ∗ x1)

− (0.0014 ∗ x2) + (30.15 ∗ x3)− (0.2204 ∗ x4)

+ (0.00707 ∗ x4 ∗ x4) + (0.000005 ∗ x1 ∗ x2)

− (0.001189 ∗ x1 ∗ x3)− (1.143 ∗ x2 ∗ x3)

+ (0.825 ∗ x3 ∗ x4)

(7.3)

Chapter 7 Diego Alejandro Arenas Contreras 101

Data Science use cases in the Manufacturing Industry

7.1.3 Benefits of an estimation model for manning optimi-
sation

The limitations of a model in an Excel document are many. The need to make
multiple copies of the model where each copy can be prone to introduce human
error, generating different results for the same input data. It makes it difficult to
update the model given that there will be multiple versions of the Excel document
across the organisation. For a big organisation, this will introduce a new challenge
to make sure every person uses the latest version of the spreadsheet.

The benefits of the contributions of this project are many; they are operational,
financial, and reputational among others.

On the operational benefits, we can increase the forecast accuracy by using up
to date data rather than static data sets. Also, we will add easiness to use and
accessibility to the forecast model.

On the financial benefits, we aim to balance the ratio of rotators versus local
staff. Rotators are technicians that go from one project site to the next and they
are not assigned to a location for the full duration of the projects. Still, they travel
based on the issues that appear on particular project sites. Local staff are people
hired locally for the specific project site. We aim to optimise employee allocation.
This would drive efficient cost savings for the organisation.

A forecast model like this one would help bid managers at commercial bids to
right-size the budget entered for the manning of the projects.

Finally, we aim to prevent under and overstaffed sites.

7.2 Problem Statement

The question we try to answer is can we implement and deploy the current model
to site managers securely, providing the same information to each user and simplify
the process of update or retrain the model based on new data and information?

7.3 Planning

The EngD project was planned in three phases given the requirements of opera-
tionalising the existing estimation model and then updating it using up to date
data.

The first phase was about making the existing model in a standalone spreadsheet,
enterprise-wide available from a single user interface so that every user could have
access to the same version of the model. The second phase would be about enhancing
the model using up to date data and using all the data available in the databases of
historic project sites. The original model had access only to a subset of the project
sites data. The third phase of this project, a new project, would be to consider an
estimation model for multiple project sites. So nearby project sites could rely on
shared resources and technicians.

In phase one of the project, we looked at the available data sources and explored
them enough to choose what data sources we could use. We also created a layered
architecture to deploy this model in an application connected via API that was
containerised and deployed in the cloud service of the organisation.

102 Chapter 7 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

In phase two, we validated and checked data sources to update the model, but
we did not deploy a new model. We verified the feasibility of training a new model
using the data sources available at the time to update the current formula. This
was done during the implementation of a enterprise-wide data lake so most of the
data sources would be incorporated to the central repository in the coming months
but at the time of the second phase they were not available on-demand for analysis.

This chapter reports on phases one and two. Phase three has not been planned
at the time of the writing of this chapter.

1. Phase 1: Automation of current the Excel process.

2. Phase 2: Enhancing the current model with more up to date data sets and
insight.

3. Phase 3: Implementing a solution that optimises the calculation for multiple
sites.

7.3.1 Methodology

We maintained close communications with the stakeholders of the project. We held
weekly meetings with the stakeholders where we would present early results and
ask questions about the implementation and expectations of the project. We first
explored the data sources and reported the findings. We built rapid prototypes and
mock-ups to show the users how the interaction with the model would be using a
web interface. This iterative process led to a modular design of the architecture
and it the user interface was validated early in the project by the stakeholders.
The user interface of the application was adjusted for user interaction with the
recommendations from the stakeholders. We deployed an online mobile application
that final users tested.

We created a git repository for phase one of the project. We wrote documentation
about the business process. We created a knowledge base for the project so the
subsequent phases could leverage the insights generated from previous stages.

We developed the solution using an agile approach. We presented early results
and the progress of the project in weekly meetings with the stakeholders so we
could include their feedback in the planning for the next week’s tasks. We built two
functional mock-ups that the user reviewed. With the feedback from these early
prototypes, we could design the final user interface for the application.

The first mock-up was a monolith application using Python. An HTML page
we created with boxes to collect the input the parameters of an on-site project.
This helped to design the response from the estimation model and the user interface
to present the results. The second mock-up implemented user feedback; the user
interface was developed with PowerApps, which helped to finalise a layered design
and use corporate colours in the user interface in the final version and separating
the layers of the interaction of the final solution.

The deployment of the model was automated by creating a trigger that will
deploy the model to Azure into a container every time a change is pushed to the
main branch of the git repository of the project. The time between phase one and
two was around eight months apart.

Chapter 7 Diego Alejandro Arenas Contreras 103

Data Science use cases in the Manufacturing Industry

7.4 Design

The objective of the first phase was operationalising the existing estimation model.
Once current model was deployed, we wanted to use up to date data to retrain a
new model to forecast the people needed to support a project site. We wanted a
modular design that would allow, for example, to replace the existing model with
no impact on other system components. Ideally, the estimation model could be
replaced by a new version without changing the solution’s user interface. In the
future, we would need to upgrade the model, and modularising the design makes
the maintenance tasks and further development simpler, as the components are
replaceable and upgradeable.

This project aimed since its conception to have a modular design. The design
considered a microservice architecture implemented on containers. The unplanned
failures estimation model can be served from a container. We used a lightweight
web server enabling an API to communicate with client apps that would request a
manning estimation. The front-end was implemented using PowerApps.

7.4.1 Software Architecture

There is a wide range of options to borrow from software engineering practices. We
looked at some software design patterns to design our solution. One of the most
common software architecture used is the layered architecture also known as tier-
architecture. It is a good starting point for us because it allows the separation of
the functionality of the system in horizontal layers that interact with each other via
interfaces. It is good to represent business logic, persistent storage, and databases
working together.

We combined the layered design with another enterprise architecture, the mi-
croservices architecture. The idea behind a microservice architecture is to separate
functionality into components and deploy each one of them as a separate unit. A
microservice architecture increases the scalability of the solution while decouples the
design of the solution. The challenge with a microservice architecture is to determine
the right level of component granularity, what task a component should handle, or
if it should be decomposed into a more granular level of components.

For this project, we used both approaches to design the final solution. A layered
architecture helps to identify and implement the functionality of the solution. Ad-
ditionally, a microservice architecture allows for scalability of the deployment of the
solution to almost any cloud provider using manifests for the deployment.

Other architectures we explored were the event-driven architecture (used in
Chapters 3 and 5), microkernel architecture used to design real-time systems, and
space-based architectures. The utility of these architectures were less clear in the
context of this project.

We suggested a three-layered architecture with 1) the estimation model in the
back-end, 2) a REST API in the middle to communicate with the model, and 3)
a front-end with the user interface. The estimation model would be deployed as a
service (or microservice) so that any application could connect and interact with the
back-end model using its API.

A layered architecture is a level of abstraction in the design. The separation

104 Chapter 7 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

of functionality allows designing specific components that take care of particular
tasks in the system. Abstraction is something desired as it helps to decouple the
interactions between the system components.

A layered architecture is the opposite of having all the code implemented under
a single module, so any change to specific parts of the system may risk impacting
things that were not intended to be changed. Still, as all the code is in the same
module, all the code is highly dependable. Adding layers of abstraction is the way to
solve this kind of problem, allowing modification but only affecting the component’s
scope and not the overall system.

Technology stack

We used Docker1 and PowerApps2 as our technological stack. We used Azure De-
vOps for the project repository and documentation. We used Azure Container
Instances3 (ACI) for the deployment of the solution.

Docker and containers

Docker is a containerisation framework that allows to create and work with contain-
ers using their API. This makes the development simpler and ensures that all the
dependencies needed are included in the container deployed as a self-isolated service.
Docker has the concept of images and containers. An image can be understood as
a template. We built images that have precisely the libraries and dependencies that
we need to work with for our project. For example, for this project, we created an
image that contained Python version 3. We installed the necessary Python libraries
for the system to work like Flask, a lightweight web server. We choose Flask because,
among the Python web frameworks, is the one that allows rapid web prototyping
with minimal setup and coding. Also it was straightforward to implement a REST
API on using Flask.

We used that image to deploy create the container that will be deployed with
the solution. Containers are created from images. A container is an instance of
an existing image. As containers are created from images, we expect the same
behaviour, platform-independent, of any container created from the same image.

Terraform

Early in the project, we explored the use of Terraform4. Terraform is a framework
that helps create machines and other resources for computing using the APIs of cloud
providers. Terraform allows creating and configuring cloud services from code or
description files. Creating and consuming cloud services from source code is known
as Infrastructure as a Service (IaaS). The idea was to configure the deployment from
the repository and then use Terraform to deploy it. The advantage of using IaaS is

1Official website of Docker, https://www.docker.com (accessed 15 September 2021).
2Official website of PowerApps, https://powerapps.microsoft.com/en-us/ (accessed 14 Septem-

ber 2021).
3Official website documentation, https://azure.microsoft.com/en-gb/services/container-

instances/ (accessed 14 September 2021).
4Official website of Terraform, https://www.terraform.io (accessed 16 September 2021).

Chapter 7 Diego Alejandro Arenas Contreras 105

Data Science use cases in the Manufacturing Industry

that it allowed us to deploy the full solution from the source code and it could be
deployed to any cloud provider.

Prototyping

The estimation of people required at a project site used regression algorithms to
estimate the number of unexpected failures and then computed the number of hours
a technician will spend fixing unplanned maintenances. The user could query the
estimation model on demand. The user has a PowerApp application where to input
the size of the project in megawatts, the number of machines and type of generators
that the project will use, the quality of the fuel that is going to be used in the
devices, the quality of the air in the location of the project site. Given the inputs
from the user, the system will respond with the estimation of people needed to work
supporting the project site.

The system required to be interactive. This interactivity with the models de-
mands a different way of batch or streaming processing architecture. The interac-
tivity can be solved using an API to query the models while allowing the user to
interact with the results.

We presented an early prototype of the solution to the stakeholders in week
three of the project to collect user feedback. The prototype was built using Flask, a
lightweight Python web server, and Python code in a Docker container. The benefits
of presenting an early prototype were twofold: it helped to realise that the back-
end of the solution needed to be modular to improve the model and make future
improvements and helped with the design of the user interface to add the interactive
section on the results page. The prototype implemented in Python as a monolith
application had a straightforward implementation of the Excel document. The final
solution used a much more decoupled design.

As in the classic software engineering book “The Mythical Man-Month” [10] the
advice in chapter 11, saying “plan to throw one [design] away” because the first
versions, often, include design criteria that may compromise functionalities or make
more difficult future changes to the architecture. The early decisions condition how
the software will be developed, and there is often less information to make these
decisions early in the project. The same principle was applied to the design of the
ADEL library as described in Chapter 6.

The solution

The final solution implemented a combination of a layered architecture with a mi-
croservices architecture. We modularised the design into layers to abstract the
behaviour of the solution. The implementation of the layered architecture used a
microservice architecture.

We used Python code for the back-end replicating the regression models, an
API to interface between the back-end and front-end, and a front-end user interface
implemented in PowerApps.

The containerisation of the solution helped to deploy the latest changes to the
solution in a fast way. Future improvements to the regression models or the re-
placement of them would be happening by simply updating the models’ code in the
back-end with the new models and then deploying them. This would not impact
the final user as the container is replaced with an updated version, and from now

106 Chapter 7 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

on, the API will be answering requests using a new version of the model. Of course,
the new models should have been tested and validated, but the change would occur
with no impact on the application’s API or the user interface.

The back-end replicates the logic from the Excel file. All the models and func-
tions are implemented in Python.

7.4.2 Data

The outcome from Phase 1 was an online solution that replicated the standalone
spreadsheet current estimation model. The current estimation model was developed
and shared using an Excel document. Within the spreadsheets, there was tabular
data that was queried using vlookup functions inside the Excel file.

We added the tabular data to the project repository. We traced the formulas
and links inside the Excel file and we identified the necessary tables to be included
as part of the project. We created a data folder inside the project’s repository and
added five CSV files electricians hours.csv, helpers hours.csv, mechanics hours.csv,
service crew hours.csv, and shift patterns.csv. The first four files contained the times
per activity reported by the technicians from surveys. The shift patterns file con-
tained the work time schedules for different countries and regions to know how
many hours per week they are expected to be available depending on the shift in
a particular location. Any update on the working patterns should be updated in
the shift patterns.csv file in the repository and redeploy the project. The working
patterns are not expected to be updated often.

The information used in the CSV files was collected during 2016 and represented
static data based on a sample of technicians and project sites. The time per activity
is one of the things that would require to be updated and generating this information
from up to date data from the database system that records the maintenance of the
machines on the project sites. We identified the system and its database. We
explored the database during the second phase of the project.

7.4.3 API

We implemented the estimation model in a Python module (a single .py file) called
headcount model.py. The headcount module implements functions to compute to-
tals and generate the results. A single function is used as an entry point for the
API, it receives a dictionary with the input data and returns another dictionary
containing detailed information to be presented by the user interface. There is a
single function that calculates each one of the detailed information. The response of
the get estimation() function includes the expected number of hours of planned and
unplanned maintenance per mechanics, electrician, service crew and helpers; and
the number of people needed per technician considering the project requires 24/7
coverage.

The API was implemented using Flask. A lightweight Python web server. The
API receives a single POST message containing a JSON file with the input data for
the models. The API calls the estimation model and receives a JSON formatted
structure returned in the API POST call to the API. The same structure is returned
to the API caller as the response of its POST API call.

Chapter 7 Diego Alejandro Arenas Contreras 107

Data Science use cases in the Manufacturing Industry

Figure 7.1: The architecture of the application. The estimation model is a Python
module with a REST API that accepts a single POST message to query the esti-
mation model. Both modules are containerised in a Docker container. The API is
exposed in port 5000 and can receive calls from client applications. The API will
reply to the POST call with the results of the model in a JSON file. The PowerApp
in the front-end will request the results and present them back to the user in a
second interactive interface.

Using an API simplifies the interaction between the front-end and the models in
the back-end. Any changes to the models just need to be adjusted in the API layer
and vice versa. A lightweight web server allows the application to be self-contained
without the need for additional resources.

The architecture of the application is presented in Figure 7.1.

7.5 Implementation

We created a Docker image with the code of the project and pushed that image to
Azure Container Services (ACS) so that we made the image available from Azure
so we could create containers using the image. The Docker image will contain the
headcount module, the CSV files containing the data for lookup reference values, and
the REST API that queries the estimation model. The image starts the webserver
in port 5000. When a container is created using that image, the container will start
listening to the port’s API.

The front-end of the system was implemented using PowerApps. PowerApps
simplifies the development of mobile apps. The users can access our app from
tablets, browsers, or chat apps such as Microsoft Teams. We expected that the final
users would make use of tablets in the project sites.

The security is integrated by default as to have access to the PowerApp app,
is required to have a valid corporate email account. The access to the app is only
allowed using the corporate network of the organisation.

The graphic user interface has two pages. In Figure 7.2 we can see the first page
for input data. Most of the input parameters are implemented as a selection list to
avoid data quality problems. The domain values for the parameters are part of the
repository in CSV files.

The results of the estimation model are sent to the client application. The user
is presented with the estimated number of planned and unplanned hours for the
maintenance of the project. In Figure 7.3 we can see the second page with the re-
sults. The user can modify parameters in the results and play with what-if scenarios.
The user can test different configurations of the project depending on the people

108 Chapter 7 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

available or other factors. For example, the user can change the number of already
confirmed people for the project site, and the app will calculate how many addi-
tional people are required per expertise type. This additional functionality makes
the application useful as the results can be modified according to people’s general
availability around the globe. The user interface then offers the amount of local or
global rotators necessary to support the project site maintenance of the machines.

The technology stack used in this project is the following:

• Python 3.6 or above for flask and flask restful

• Docker

• PowerApps

• Azure DevOps

• Azure Container Registry (CR)

• Azure Container Instances (ACI)

The modular architecture allows us to update the forecast model component
with no impact on the front-end. If a new parameter needs to be added or returned
to the front-end, it will imply a slight change to the API, and as it is versioned, it
won’t impact the current implementation until the new version is updated in the
client app.

7.5.1 Deployment

The project is on a git repository in Azure DevOps for automated deployment using
the build options in Azure. This project included the use of continuous integration
using Azure DevOps. When a commit is pushed to the main branch of the repository,
it will automatically deploy the system as a new version.

We created a pipeline in the code repository for the deployment of the project. So
every time we would push code to the main branch of the repository, the deployment
pipeline would be triggered, creating a new Docker image, registering the new Docker
image to the container registry of Azure, creating a container from that image, and
exposing it for other applications to consume it. In our case, the application was a
PowerApp application that sends a JSON file with the POST call, and it expects a
JSON file back from the API with the response and all the data that needs to be
presented back to the user.

When a container is created, we can assign it a fully qualified domain name
(FQDN) and pass the FQDN to the front-end app to access the REST API.

The back-end and the webserver are containerised in Docker using Python 3.7.
We deployed a single container to Azure Container Instances (ACI) with the models
and API, but it can be deployed to a Kubernetes cluster if necessary. In ACI, the
front-end can query the models using an FQDN for the API.

7.6 Evaluation

We compared the results from the model in Python to the Excel files.

Chapter 7 Diego Alejandro Arenas Contreras 109

Data Science use cases in the Manufacturing Industry

Figure 7.2: Screen for input data.

Figure 7.3: Screen for results.

The security of the system is managed via Azure authentication. All the app
users must have a valid account and are registered in the organisation’s network.
The users of the PowerApp are granted access to their nominated accounts using
their corporate email accounts.

We deployed the system in Azure Container Services and granted access to a few
users to test the app. The users could access the URL of the app by logging in to
the organisation’s network, which is something they are most of the time while they
are working.

We added model assertions as testing of the model [94] for testing the results
generated by the estimation model module of the system. Model assertions are used
to improve machine learning models. Still, we included early on with the standalone
implementation of the forecast models thinking that in the future, for phase 2, we
would require techniques for testing and debugging the machine learning models
that we would train using up to date data.

We received good feedback from the users. Some users asked if we could imple-

110 Chapter 7 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

ment a forecast model like the one built for diesel assets but for gas-powered assets.
We explored this option in phase 2 of the project. The answer is yes. As we can
collect data for diesel, we could collect data for gas assets, changing some of the
filters and queries to the same data sources, and this would enable the modelling for
gas assets allowing us to estimate the number of necessary technicians to support
the project sites that use gas assets. We tested creating a training data set for the
gas assets in phase 2 of the project.

7.7 Phase 2

In this section, we will describe the work we did for phase 2 of the project. It was a
continuation of the exploration performed in phase 1 of the project. This phase did
not deliver a new estimation model but explored the data sources for the project
mainly because of time constraints and changes in the roles of the stakeholders of
the project at the time of the implementation of phase 2.

In phase 2 we managed to identify the necessary data sources for a new forecast
model. We identified the tables where the service orders are stored in the system, and
we created a simple machine learning model to estimate the number of unplanned
service orders per week. The exercise of creating a machine learning model was to
check if the data we collected could be used or not for a final model or more data
would be necessary to complete a forecast model. We concluded that we could use
the data we found to create a complete model. But adding more data sources is
desirable and those data sets were not available on demand for an analyst to deploy
and maintain a new machine learning model at the time of the exploration.

We required the data about the project sites to be available in the central data
repository for analysts to explore and retrain models. We identified the data sources,
but those systems were not yet in a centralised data repository to be used on request.
It was possible to query the data from the data source, but analysts would not have
direct access to it in the data lake. There were two systems that we had no access
to their data on request. The technician skills database where we could find the
experience and courses of the technicians and the technician application data that
records the starting and finishing time of the tasks technicians performs on the
maintenance of the assets. This limitation made us decide to hold the deployment
of a full estimation model using updated data.

Among the many data sources explored, we identified the assets assigned to the
project sites. For each asset, we had identified the engine type of the machine. We
could sum up the capacity or size of the assets and determine the size of the projects.
We also found data about the service orders by type, planned and unplanned. We
identified the different types of generators assigned to project sites.

We created a training data set to test if a machine learning model would have
predictive capabilities using this data.

7.7.1 Planning

We listed the tasks that we would need to do once we were ready to start working on
phase 2 of the project. We established five high-level tasks that we needed to explore:
data exploration, data modelling, deployment, evaluation, and post-analysis.

Chapter 7 Diego Alejandro Arenas Contreras 111

Data Science use cases in the Manufacturing Industry

Data exploration

We identified the critical systems and databases to be explored for phase 2 to get
the necessary data to build the forecast models. We needed to do a historic analysis
of services orders with a focus on unplanned maintenance orders. We would require
guidance from business experts to determine the type of orders that classify as
unplanned. We would need to explore the tables of the database using the profiling
tool explained in Chapter 2.

The analysis would include the frequency of the service orders per asset type
and locations over time. We had to take into consideration potential changes in
the typification of the service orders for unplanned maintenance. The stakeholders
told us that in 2018 there was a change in the labelling used in the system that
records the service orders, so this would impact any raw analysis unless we clean
and combine the types of service orders.

Among the identified data sources for phase 2 is the system where the service
orders are recorded and updated as the technicians work on the assets. A secondary
system that technicians use to record all the maintenance processes is used from
handhelds or tablets and helps record regular checks on the machines or results and
notes from inspections to the devices. It records the actual starting and ending
times of maintenance tasks. This data would help to compute the time spent per
maintenance task more accurately. Another dataset is the technician’s level and
experience that we think we could contribute to the project to weigh the experience
into the estimation model to have more accuracy in the results.

Data modelling

Once we had the data, the first step would be to create a baseline model using a
simple predictor. We would prefer not to use the current estimation model as a
baseline model as it was built using a small subset of projects and data from three
years ago. A simple baseline model trained with up to date data can be compared
against the results of the original estimation model but just for reference, not as a
validation of the new model.

A correlation analysis will be necessary to determine useful features to be used
by the model. Also we would require to apply some feature engineering operations to
transform and improve the accuracy of the models using the data available. Finally,
training multiple machine learning models and select a sound model to replace the
current forecast model that uses surveyed data and manual inputs to generate the
estimations.

Deployment

The deployment of the solution was implemented during phase 1 of the project. We
developed a deployment pipeline that when we push changes to the main branch of
the project’s repository, the solution will be deployed to a container. The PowerApp
could access it using an FQND assigned to the container.

For a replacement of the estimation model, we would need to include the data
collection and transformation operations implemented in the data modelling stage
to reproduce the forecast model’s training.

112 Chapter 7 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

The modularised design of the solution makes it simple to replace or update the
model or any of the components of the architecture.

It will be necessary to include an additional pipeline to retrain the forecast model
whenever it is needed, or concept drift [28] happens.

Evaluation

It will be necessary to test and validate the results from the new estimation model.
We would grant access to a reduced number of users to get estimations and compare
them with their experience.

We plan to do the exercise of computing the forecast from using both models,
the original one and the one trained with up to date data and use it for comparison,
not as a measure of accuracy as the models were trained using a different subset
of data. The differences or similarities in the predictions would be for reference to
the users to inform about any discrepancies from the previous way to estimate the
number of workers in project sites.

Post analysis

The idea of a post-analysis of the project is to provide more information on what
impacts the forecast model—for example, analysing what factors impact the number
of service orders: location, running hours, type of personnel, usage pattern of the
assets, etc. This would generate some understanding of what triggers unplanned
maintenances on project sites and could mitigate some of the actionable factors.
This step is different from data modelling because data modelling will indicate what
currently correlates with unplanned maintenances. A post-analysis could include
data not necessarily used to train the model but related to the assets’ operations on
the project sites.

We want to monitor the model’s performance to determine when necessary to
retrain it or deploy a new version of the model. Ideally, to suggest a period to retrain
the model over time.

7.7.2 Modelling

We were able to create a training data set to predict unplanned maintenances. Our
target variable for the model was the number of unplanned maintenances per asset
and per project per week. We used this data set to develop a machine learning
model to predict the number of unplanned service orders per week. This model was
created only to test the available features’ predictive capacity and inform about this
for a future project.

In Figure 7.4 we can see the total number of service orders of a given project in
the blue line and the number of SO10 in the orange line.

We gathered data about the project sites and how many assets were allocated
per project site. We identified the asset type or engine types of the assets. With
the identification of the assets, we were able to collect the service orders data. The
service orders are where the maintenance system stores the information about the
maintenances of the assets.

We were interested in two types of service orders. Service orders number ten
(SO10) and service orders number thirteen (SO13). Both corresponded to unplanned

Chapter 7 Diego Alejandro Arenas Contreras 113

Data Science use cases in the Manufacturing Industry

Figure 7.4: Number of service orders per week. The total number of SO is in blue
and the number of SO10 is in orange.

maintenances on assets. In 2018, there was a change in the labelling of the unplanned
maintenances for the assets. Before 2018 the unplanned maintenances were labelled
with SO10, and after 2018 the technicians started using SO13 for unplanned main-
tenances. We had the starting and finishing dates of the assets in the projects to
calculate the weeks hired and the number of service orders per project per type of
planned and unplanned maintenances.

We created the training data set, created features with the available data, and
created three target variables to explore what time horizon would be more beneficial
for a forecasting model. The code was flexible enough to make a training data set
for a given engine type. So we could test that multiple machine learning models for
the different asset types.

We created three target variables to test machine learning models with different
time ranges to predict the number of unplanned service orders. We also created the
target variables for other asset types. The idea was to train and compare the three
models. The benefit of training three models is that we can compare the predictive
capacity of the features we created for the model and choose the best model to
predict the future demand of technicians at project sites. The three target variables
were the number of unplanned service orders 1) in the next three months, 2) in the
next six months, and 3) in the next twelve months. The training data will only
contain information from the time previous to the starting date of the period of the
target variable.

Feature engineering

The one-hot encoding technique was used to create binary features from the project
category, which indicates the type and location of the project sites by geographic
zones.

Four additional features were created to represent five Megawatt (MW) sizes
of projects. Less than forty MW, between forty and eighty MW, between eighty
and hundred and twenty MW, and greater than a hundred and twenty MW. It was
decided on the thresholds after analysing the histogram plot of the project’s sizes

114 Chapter 7 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Figure 7.5: Correlation of variables generated to train a machine learning model.

before splitting the data into train and test datasets.

Results

We trained a machine learning model using a logistic regression algorithm (Chapter
4.3.4 of [29]) and a decision tree (Chapter 14.4 of [29]). The decision tree was a
decision tree regressor. We used the scikit-learn Python library [42] to train the
models. The accuracy of the tree regressor was 93% which is good for a model just
using project locations and project size as input variables. The explanation of the
variance was 93% as well.

A k-nearest neighbour algorithm with n = 2, achieved 64% accuracy and 43%
with n = 3.

7.8 Conclusions

The contribution of this project was a modularised architecture to deploy a forecast
model, that could be reused to deploy other types of machine learning models that
require to be served to client applications. The exploration and understanding of
project site related data that can be used for the development of future projects
related with project sites.

The forecast model for fuel powered asset was successfully deployed in containers
and made available in the Azure cloud for users to query the model.

The project was well received by the stakeholders. We presented the results and
the solution deployed in a retrospective meeting before releasing the solution for
testing and validation by end users.

After the diesel model was released for testing, there was a request to implement
a similar model for gas powered assets which is in standby at the time of writing
this chapter.

7.9 Further development

There is a correlation between the number of hours an asset runs and the number
of unplanned maintenance. This means that the lifetime of the project sites may
impact the performance of the machines used by the project. There could be differ-
ences in the number of unplanned maintenances at the beginning, middle, or once
the project is coming to an end. The workloads could be different over time so this
could be interesting to analyse in the future. If this hypothesis is true, this could

Chapter 7 Diego Alejandro Arenas Contreras 115

Data Science use cases in the Manufacturing Industry

account for the manning allocation of project sites.

After the implementation of the diesel fuel model, there was interest from the
business to develop new estimation models for gas engine types. This is feasible,
there was enough data to make it work, but the implementation of such model was
out of the scope of the manning optimisation project that dealt with diesel engine
models. This could be a further development leveraging the knowledge generated
during the manning optimisation project.

Another interesting analysis that can derive from this work is to determine the
life cycle of machines. Analysing the maintenance logs of planned and unplanned
maintenance to see if it can be optimised or help in the prediction of other mainte-
nances.

One of the challenges for future development is to confirm the accuracy of the
times reported in the maintenance log systems. Make sure the activities are mapped
correctly to the tasks. Validating the accuracy of the data collected from the project
sites.

116 Chapter 7 Diego Alejandro Arenas Contreras

Chapter 8

External Fuel Tank Battery
Analysis

Summary

This project explores the lifespan of lithium batteries attached to fuel sensors on
external fuel tanks. External fuel tanks refill the internal fuel tanks of generators
deployed in remote project sites around the world. The fuel sensor’s batteries should
have a lifespan of 12 months.

8.1 Introduction

This project presents a single experimental analysis on the duration of batteries of
sensors based on an information requirement from the operations team in charge of
planning the maintenances of the machines.

This project reflects some of the skills expected from data professionals that
sometimes will have to transform business requirements from the domain experts
into an analytical approach. The use of analytical and critical thinking skills was
crucial to planning the analysis for a project like this.

Our contribution in this project was to put together an analytic approach based
on verbal requirements from stakeholders. We designed an analytical project where
used several applied data analysis techniques to answer the question from the stake-
holders.

We used the automated exploratory data analysis tool presented in Chapter 2 to
explore the content of a telemetry database to identify the necessary tables for the
analysis. We applied survival analysis and spectral clustering to the data available
as part of our approach. The details of the design and implementation are explained
later in this chapter.

8.2 Background

The Power Solutions (PS) line of business works with long-term projects. The
duration of the projects can vary from a few months to several years. In contrast,
the Rental Solutions (RS) line of business deals with short term projects that can

117

Data Science use cases in the Manufacturing Industry

last for a day to often a few weeks with a high rotation of the assets used in the
projects. This analysis is in the context of the PS line of business.

Power Solutions projects often have assets powered by diesel with internal fuel
tanks. The capacity of the internal fuel tanks depends on the model of the generator.
Sometimes, the projects will also have external fuel tanks deployed to the project
sites. The external fuel tanks can be connected to more than one asset simultane-
ously and will refill the internal fuel tanks when they are below a certain level, often
below the 40% mark.

When a Power Solutions project ends, the assets are sent to a warehouse to be
checked and prepared for their next deployment. But with multi-year projects, it
is necessary to anticipate the needs of maintenance of the assets and service them
on-site.

Once the assets are installed on a project site, they are not expected to be
relocated during the project’s duration. For this reason, it is essential to be aware
of the times when specific parts of the assets require maintenance.

The fuel level of the external fuel tanks is monitored with level sensors. These
level sensors have lithium batteries attached to make them work. The level sensor
will stop reporting the level of the external fuel tank if its battery runs out of charge,
which can cause different kinds of problems.

By default, the sensor reports the fuel level every twenty-four hours. It sends
a single data point of the measurement to a telemetry database. The expected
duration of a battery of a fuel level sensor is twelve months. Replacing batteries
in advance is considerably cheaper than waiting until it fails which might stop the
project or provoke a failure.

8.3 Problem Statement

The question for this project was can we determine the average lifetime of the batter-
ies of the fuel sensors of the external fuel tanks?. Do these batteries last for twelve
or more months?

8.4 Methodology

In this chapter, we will use the terms stakeholders and users interchangeably de-
pending on the context, but they refer to the same business people interested in the
project.

We held regular meetings with the stakeholders, presenting early results for dis-
cussion and guidance on the analysis. We produced results for every weekly meeting.
Having early results to discuss and analyse proved helpful in understanding the prob-
lem, validating the data at the beginning of the project, and then conducting the
data analysis.

We used a methodology of documentation for data science projects recommended
by Microsoft1. The git workflow and documentation artifacts used during this
project became a recommended practice informed in Section 4.5.6 of Chapter 4
about coding guidelines and documentation of data science projects.

1TDSP Project Structure, and Documents and Artifact Templates,
https://github.com/Azure/Azure-TDSP-ProjectTemplate (accessed 21 July 2021).

118 Chapter 8 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

The documentation of the project included:

• Take on document: It contains questions to be answered from the stake-
holder’s perspective. The idea is to communicate relevant knowledge from the
stakeholders to the development team. Some of the questions are: what are
the challenges they see; what are the benefits (operational, financial, repu-
tational, and of health and safety); the current process they use to get the
results the project is intending to get; and finally about the data sources that
we could use to work on the project.

• Project Charter: It contains an overview of the project with the scope, the
people and their roles, the metrics used to define success, the planning, the
architecture, and contact information for any questions regarding the project.

• Data summary report: It contains the description of the data sources, the
exploratory data analysis, and initial analysis of the target variable, in this
case, the voltage of the batteries.

• Final report: It contains information about the machine learning models
used, their implementation, a description of the solution and the results. It is
a model-wise report; it tells about the final model selected in the project. If
there is more than one final model to report, a final report document is created
for each final model.

• Exit report: It contains the main results from the project. It provides an
overview of what the project was about, the business domain and the busi-
ness problem that it helped to solve, a high-level description of the data used
and the modelling and validation method used, the solution architecture, the
benefits for the company and a section with lessons learned during the project
where one of the questions is ”What is unique about project, specific chal-
lenges?”. This section is meant to be shared with the broader analytics team
to build knowledge from finished projects and their particular challenges.

8.4.1 Project Plan

As in many new data science projects, the data for the project was unknown to
the team. For this reason, we included an initial phase for data exploration and
data discovery. The data analysis phase would be based on the results of the data
exploration. What would be feasible is determined by the data available. And
finally, the third phase is the analysis of the results and the suggested actions for
the stakeholders.

Two weeks before starting this project, there was a major upgrade in the way
technicians collected data from the sensors. Only the voltage signal of the batteries,
among the many signals collected from the sensors, was usable for this project. We
based all the analysis on the voltage signal of the batteries. Another impasse was
that we didn’t have enough data to cover 12 months of data. For this reason, we
waited for six months to start the data analysis phase. We completed the data
exploration phase, first identifying the data sources and designed the process and
analysis that we wanted to apply to the data, then we waited.

Chapter 8 Diego Alejandro Arenas Contreras 119

Data Science use cases in the Manufacturing Industry

At the end of the project the exit report was completed and shared with the
stakeholders. The exit report marked the completion of the project. It contained an
overview of the project, the main findings from the exploration phase, the modelling
and validation techniques used, relevant results, any decision criteria that was used
to during the project to let everyone know what decisions were made why. This
report also contained a section of lessons learned so all the challenges and solutions
can be shared with the rest of the data science team.

8.4.2 Data Exploration

The users had insufficient information about the data sources for the project. They
had access to a web platform designed for monitoring the assets to check the battery
and fuel levels but did not know about the underlying database.

The first challenge was to identify the tables from the database with the data for
this project. We knew that all the necessary data was in that telemetry database
that was used by the web platform. We knew the name of the database, but we had
no information about which tables we could use for this project.

We profiled the database using the database profiling tool presented in Chapter
2. The results were around 250 tables, around 5,900 columns and more than 800
million rows in the database. The profiling exercise generated a queryable database
with metadata from the original database.

The metadata database contained table names, column names, number of rows
and number of columns per table, number of unique values and number of null values
per column, the frequency of data values of columns with less than five thousand
unique data values2, time and date data grouped by month, and statistics such as
average, standard deviation, variance, minimum, maximum, among other statistical
moments for each numeric column.

We were able to query the database with some of the unique codes of the fuel
tanks that we could get from accessing the web platform. This sherlock-esque
method helped to identify the tables first and then their relationships with other
tables. In less than a day of work, we had an idea of the columns and tables that
were necessary to use for the project. In contrast, a manual search for the same
data would have taken an analyst days, if not weeks.

Using the metadata, we first identify the ID columns of the tables that contained
information about the fuel tanks. Among those tables, we identified the parametric
tables containing information about the assets like their capacity in litres.

We used the column ID to search for other tables with the same column names
first, and then we used a strategy of joining columns from other tables using the
data domain of the columns. The use of the data domain allowed us to identify
potential relationships with other tables. The next step was to search for more
tables potentially related using the data domain of the other columns in the tables
already identified.

The search by data domain can be costly in time and computing if applied
directly to the source database. Still, using the metadata database, it is transformed
to a join query of a 1-to-1 cardinality. For example, a column in a table may contain
thousands of records but only a few unique values; a similar column from a different

2The 5,000 unique values threshold is the default value of the profiling tool and it was expected
to have less than five thousand external fuel tanks in the system.

120 Chapter 8 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

table may have millions of records but with the same few unique values; using the
metadata from both tables, unique values and frequency, a query that would produce
a many-to-many query can be reduced to a 1-to-1 query using only a few kilobytes
in memory compared to a cartesian product using maybe gigabytes of data.

We validated the data by comparing the values presented in the user interface of
the web platform and the values that we were able to generate from queries to the
source database, based on knowledge obtained from its metadata.

8.4.3 The data

We identified around five tables related to the fuel tanks of the 250 tables in the
database: two operational tables and three parametric tables with information about
the assets and equipment. The telemetry data is often stored for all the assets in the
same table, and there aren’t asset-specific tables. The telemetry tables had over 100
million rows, of which only 2 million rows were of interest for the project. The fuel
data table had 30 million rows with a data point every hour for each asset reporting
the fuel level and a 3 million rows table summarising the daily fuel levels. Still, we
could not make use of fuel measurements for this project.

The data exploration and findings for this project turned out to be useful for
other internal projects. Among those projects the fuel consumption rate is described
in Chapter 9.

Once we identified the tables, we proceed to query the database to understand
the volume of the data first and then the potential for exploration.

Identifying the exact time when batteries are replaced is essential because it
marks the ending and starting point of the lifespan of the batteries that we want to
measure. There was no mark in the database for battery replacements.

A normal voltage signal is around 14V. The voltage values are expected to be
between 10V and 14V. In Figure 8.2 we can see the voltage signal over time. A clear
break happens when the battery is running out of charge. The signal starts decaying
to voltages below 12V and sometimes below 10V until it has a sudden break and
goes back to the 14V level. We designed a heuristic to identify those events and
mark them as battery replacement marks based on this observed behaviour.

The heuristic to determine a battery replacement was a negative voltage variation
of more than 1V. For example, if between two consecutive data points we spot a
change from 9V to 12V, that means a variation of -3V, which would be a battery
replacement. We tested the heuristic by plotting the voltage around those data
points, and the identification of those changes was consistent for all the cases. There
was an edge case when the signal would remain around healthy levels but would
send no voltage signal for several days; we considered it a new signal if no data was
collected after seven days.

These two decision criteria were validated and approved by the stakeholders.
With this definition of battery replacement, we split the voltage signal of a battery
into multiple sections, each section representing a battery replacement or a different
lifespan of a battery.

Chapter 8 Diego Alejandro Arenas Contreras 121

Data Science use cases in the Manufacturing Industry

Figure 8.1: The four plots are for the same external fuel tank. From the top left
and clockwise, we have the voltage signal, the battery capacity in percentage, the
fuel tank capacity in percentage, and the number of litres of fuel in the tank. In all
the plots, we have nine months worth of data.

8.5 Data Analysis

We filtered out the first section of the voltage signals because the batteries could
have been working before the database started receiving the sensors’ data. There was
no way to determine how long the batteries ran until the first battery replacement.

With the data exploration phase, we understood the volume and scope of the
data for this project. We identified the external fuel tanks and their associated
devices, such as the batteries for the fuel sensors. With this understanding, we
designed the analysis based on the volume of data available for the project.

We suggested two main types of analysis for this project based on determining
the lifetime of a battery: Survival Analysis and Spectral Clustering.

Survival analysis is a method originally developed to estimate the lifetime of
patients in healthcare, but it could be used in any domain that studies the lifetime
or lifespan of a studied entity. It only requires the duration of the event and a
mark indicating the death or survival at the time t. The result of a survival analysis
tells the probability that the event death has occurred or not at the time t : P (t) =
Pr(T > t). It is expected that with this information, it will be possible to determine
the probability of the batteries to be alive or with charge after 365 days.

Spectral Clustering. We wanted a way to group sections based on the shape of
the curve that visually appear naturally to the observer, as can be seen in Figure
8.3, produced by the daily voltage measurements. This distinction can be detected
using an unsupervised learning technique called spectral clustering. This clustering
algorithm considers the similarities, calculated with a given distance function, among
the sections.

122 Chapter 8 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Figure 8.2: The voltage of a battery over time. The x-axis is Voltage, and the y-axis
is seconds starting from zero, where zero is equal to the first timestamp of the time
series. We can see in blue and orange two different sections of the same voltage
signal.

8.5.1 Survival Analysis

We used the lifelines3 Python library [95] to run the survival analysis on the batter-
ies. The data modelling is straightforward for survival analysis. We modelled two
columns T and E, where each section was a row in the dataset. T is an integer
that indicates duration, in our case, the number of days that a battery has been
reporting voltage data, and E is a binary or Boolean variable that indicates if the
battery has died. This modelling technique allows to include sections that are still
alive because the effect to be observed have not occurred for all the batteries. When
a section is still alive at the measuring time, we talk about a right-censored data
point.

It was important for this analysis to have some of the batteries that already have
been replaced. We had to wait to collect more data before running the analysis. The
data from batteries that are still running are called right-censored, we can not know
what happened to those batteries after the instant of the last data point. The
information is the current status of its lifespan, which is less than its actual lifespan.

Figure 8.4 shows the Kaplan-Meier survival curve, and we can see the y-axis is
between 0 to 1 and represents the probability of a battery to be alive at x days, the
x-axis is the number of days the battery has been reporting its voltage level. This
plot was generated with nine months of data. We can see that above 60% of the
batteries are alive after 250 days.

With survival analysis, we expect to know the probability of a battery to be alive
at day n. For each time step calculates the probability of being alive at that instant,
the aim is to analyse and model the time-to-event [33]. For example, at time zero,
all the batteries will be alive or have a 100% chance of being alive. If one of the 200
batteries dies at day 50, then the probability of being alive that day will be 199/200

3Lifelines Python library, Official Documentation, https://lifelines.readthedocs.io/ (accessed 30
July 2021)

Chapter 8 Diego Alejandro Arenas Contreras 123

Data Science use cases in the Manufacturing Industry

Figure 8.3: All battery life curves. The axis is Voltage vs Time in seconds, where
second zero is the first timestamp data in the data set. Each curve is composed
of voltage measurements collected every twenty-four hours. The plot contains nine
months of voltage data from 1,300 sensors.

Figure 8.4: The Kaplan-Meier surviving curve.

or 99.5%, if a second battery dies at day 65, the probability of being alive that day
will be 198/199 * 199/200, which is 99% and so on.

We ran the same analysis using cohorts. In Figure 8.5 we can see the batteries
grouped by the month they began sending data to the database. The Nov-2018
cohort is the one with more data points.

We suggested repeating the analysis once the project has surpassed more than a
year of data collection.

8.5.2 Spectral Clustering

The expected behaviour of the lithium batteries, according to the stakeholders,
should remain around 14V until it decays only in the last few days of its lifespan.
In contrast, an alkaline or non-lithium battery will decrease steadily over time. We
wanted to identify lithium/alkaline battery swaps, for example, replacing a set of
14V lithium batteries for a set of 14V alkaline batteries on the project sites and also

124 Chapter 8 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Figure 8.5: The Kaplan-Meier surviving curve by month.

Figure 8.6: Plot of the voltage signal of the last 30 days per battery.

the malfunctioning lithium ones.
After plotting the voltages of the batteries, as can be seen in Figure 8.6, we

thought the spectral clustering method could help us distinguishing well-performing
batteries from poorly performing ones.

We used the last 30 days of voltage data of each section.
We used the sklearn [23] spectral clustering implementation for the analysis.
The spectral clustering computes a pairwise similarity measure using a given

distance function like the euclidean distance. Then, it uses a standard clustering
method like K-means to generate the groups based on the data points’ similarity
matrix rather than the actual data points.

The number of clusters is an input parameter for the algorithm. We ran it
multiple times with a different number of clusters, between 2 and 8 groups. We
visually inspected the results to determine that seven groups were a good number
of clusters. We could identify two groups of failing batteries from this clustering
and five groups with normal behaviour. We also decided that the 30 days period
of data points of data would be reasonable, with enough anticipation for the users
to take action on the results of malfunctioning batteries or for further investigation.
We estimated that at least seven days of voltage data is required to spot batteries

Chapter 8 Diego Alejandro Arenas Contreras 125

Data Science use cases in the Manufacturing Industry

Figure 8.7: Cluster 1. Figure 8.8: Cluster 2.

Figure 8.9: Cluster 0. Figure 8.10: Cluster 3.

that are about to stop working.

We choose a clustering run with seven groups. Two of the clusters, cluster 1
and cluster 2 in Figures 8.7 and 8.8 contained malfunctioning signals. Cluster 1 had
voltages below 10V which is abnormal and cluster 2 shows a rapid decrease from
12V to 7V in the last days. Clusters 0 and 3, in Figures 8.9 and 8.10 looks like
normal behaviour around between 10V and 14V and in the last five to seven days
present and abrupt decay to lower voltages. Clusters 4 and 5, in Figures 8.11 and
8.12 present low voltage signals. And finally, cluster 6 in Figure 8.13 contains all
the normal and stable voltage signals.

Figure 8.11: Cluster 4. Figure 8.12: Cluster 5.

126 Chapter 8 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Figure 8.13: Cluster 6. Normal voltage signals.

8.6 Conclusion

The survival analysis and spectral clustering used for this specific project could
be used for a wide range of projects related to duration and signal analysis in
simple terms. Survival analysis could be used, for example, to study and understand
the payment process of the company’s customers; to understand the lifetime of
generators by model type; to understand the estimation of the duration of the
project sites; to study the length of projects by industry and geography. Spectral
clustering could be used, for example, to detect malfunctioning of assets that should
be running at similar workload levels; to understand customer behaviour and cluster
them based on their purchasing behaviour.

One potential problem of using only survival analysis to study the lifespan of
batteries is that it reports the median, which is a single value to evaluate a whole
population. An analyst should extend this analysis to analyse the deciles or more
percentiles of the population to generate better insights about the batteries.

Often, survival analysis is considered outside the scope of data science and ma-
chine learning, and it is ignored by analysts when this type of analysis. This is a
missed opportunity. The mission of the data scientists is to suggest the best method
to answer the question, independently of the field of computer science, statistics, or
other data related fields.

8.6.1 Further analysis

We think that further analysis can be applied, for example, factoring in the location
and weather of where the external fuel tanks are located. Another factor that could
influence the lifespan of the batteries could be if the external fuel tanks are under
a roof or have protection from the weather. A survey of the current projects could
obtain this information, but this analysis was out of this project’s scope.

We believe that the temperature and battery capacity signals are relevant, but
they are out of this project’s scope.

An analysis that was left out of scope was to study the correlation between data
points and battery charge. The hypothesis, in this case, is that the sensor reporting
more data points to the database are consuming more energy; therefore, there will
be more battery consumption. An analyst could analyse this hypothesis by running
the number of data points reported in a given period and the average voltage of the
battery in the same period.

Chapter 8 Diego Alejandro Arenas Contreras 127

Chapter 9

Fuel consumption rate

Summary

This chapter presents the implementation of a fuel consumption rate calculation to
prioritise the connection of generators to the power grid based on their performance.
The fuel consumption rate is part of a macro project containing six questions to
design experiments to answer them. The methodology and the six questions are
presented in the first sections of this chapter.

9.1 Introduction

This macro project was intended to answer analytical questions for which the or-
ganisation did not or was not collecting data about the problem. The idea was to
design the mechanisms to collect the correct data and develop ways to analyse it.
The focus was on business hypotheses for which there was a sense of knowledge but
no evidence to support decisions.

This project used collaborative design thinking [32] of projects to define the
six problems to explore. The main contributions are the processes to agree and
prioritise, by the ability to execute and business impact, on project ideas and the
experimental analytical for one of six experimental questions. The ideas came from
a pool of business hypotheses generated by the stakeholders of the project. This
project is an excellent example of collaboration between business units and technical
departments where the needs from the business are transformed into feasible analysis
to respond to a business need or information.

Similar to the work presented in Chapter 8, we put together the analytical ap-
proach for this project using applied data analysis techniques. We designed the
algorithm to produce critical insight from the data. We explored the data using
the data profiling tool presented in Chapter 2 that helped us to understand the
limitations of the data sets and allowed us to design mechanisms in the workflow to
account for them. For example, filtering outliers in the calculations and also using
linear regressions with sawtooth-shaped data.

We started this project as a set of questions with the engineering team of the
company. We held a one-day workshop with the stakeholders of this project. The
idea was to explain what the design of experiments could do for the engineering
team.

128

Data Science use cases in the Manufacturing Industry

In Section 9.2 we preset the methodology used. In Section 9.3 we describe the
six experimental questions. In Section 9.4 we present the implementation of one of
the six experimental questions regarding the fuel consumption rate of machines. In
Section 9.5 we present our results and finally in Section 9.6 we suggest additional
analysis that can be built on top of the code base of this project.

9.2 Methodology

We organised a one-day workshop with the stakeholders of the project from the
engineering team. We used the session to think of questions that we wanted answers
for, but we are not collecting data to support analysis.

The first exercise was to think of observational studies where we can use historic
data to answer the analytical question. For those questions that we don’t have data
available, we could design controlled experiments to collect the necessary data to
answer the analytical query.

We explain the benefits of framing the problems as designing experiments. We
asked to think of unanswered questions that we may or may not have data available.
We asked to put them in post-it notes freely. We collected more than thirty ideas
for analysis. We read them out loud and explained the intention of the study. We
grouped similar ideas, and we used one post-it note representing the grouped ideas.
We then asked each participant to vote for three ideas that they considered more
important. We selected the most voted ideas and then asked the participants to
rank the ideas along two axes. One axis is on the importance of the organisation,
and the second axis is with easiness to execute the analysis.

We ended up with a selection of six ideas that we planned to execute depending
on the availability of data and other factors.

Our approach was to exhaust the possibilities of observational studies given we
have already data we can use, and designing controlled experiments for the unknowns
that remain unanswered.

It is planned to use the statsmodels [39] Python library to run the analysis.
MLFlow [85] to keep track and compare the results from the experiments. And
using a Git repository for documentation and source code of the project.

The six questions were ranked according to three criteria. 1) Data available? 2)
Readiness to start? And 3) Complexity. This chapter only presents the implemen-
tation of one of the six questions which is: Determining better or worse-performing
assets in terms of fuel consumption, as the priorities of the stakeholders changed
after a few months into the experimental design project.

9.2.1 Guidelines

We developed a document with guidelines to conduct the design of experiments.
This was the first time we tried to use statistics from experimental design to answer
data science questions. We thought it would be helpful to document our findings
and learning process to expand this project or start new experimental questions
with the resources collected for this project. We added the guidelines document to
the documentation of the git repository of this project.

Chapter 9 Diego Alejandro Arenas Contreras 129

Data Science use cases in the Manufacturing Industry

The guideline contains notes taken from the books and resources we found to
inform the development of this project. For example, we mentioned the two options
we have to answer analytical questions. One is to run controlled experiments where
an engineer can change working conditions, and we can evaluate its impact. The
second option is to have observational studies where performance is measured but
not intervened to get a response.

Before starting with the design and definition of the experiment, we set up a
questionnaire for the analyst that would help clarify the objective of the analysis
while helping define things for the experiments: what is the objective of the inves-
tigation? Who is responsible, stakeholders? Do we have any past data about the
events in the study? How was that data collected? How were the responses mea-
sured? How much physical theory is known about the phenomenon? What are the
sampling, measurement, and adjustment protocols?

We advised following a sequential approach where a series of small experiments
is better than a single comprehensive experiment.

Process knowledge is required when selecting the ranges of operation of the
variables. We explored domain driven design in Chapter 7 that can be helpful to
understand how to leverage the internal knowledge about the processes to design
the solutions better.

Based on the literature around design of experiments [72], [4], [5]. We established
a seven-step process for each one of the questions. The steps would help track the
progress of the project and mark the necessary steps to complete the analysis. The
steps are:

1. Recognition of and statement of the problem.

2. Selection of the response variable

3. Choice of factors, levels, and ranges

4. Choice of experimental design

5. Performing the experiment

6. Statistical analysis of the data

7. Conclusions and recommendations

To identify the problem to be solved we need to ask questions such as is this
a screening or a characterisation problem?. Is it a new system, or do we want to
understand what impacts the response variable?. Is it an optimisation problem so
that we are interested in what is the best way to handle the asset or finding the levels
to optimise the response. Is it a confirmation problem where we put the hypothesis
to the test. Or a discovery problem where we are interested in gaining knowledge
about the system. We need to consider the robustness of the study, under what
circumstances the response variable seriously degrades.

During the planning of the study, we need to identify what is our response
variables.

130 Chapter 9 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Also, we need to choose our factors, define their levels and ranges. We need to
classify the factors into potential design factors and nuisance factors. The potential
design factors we need to classify them into design factors that are the ones selected
to study in the experiment; held-constant factors that are variables that may exert
some effect on the response, but for purposes of the experiment, these factors are not
of interest so that they will be held at a specific level and allowed-to-vary factors. The
nuisance factors we need to be aware of three types: controllable, uncontrollable, and
noise factors. The blocking principle is often useful to deal with controllable nuisance
factors. The blocking principles dictate the creation of homogeneous blocks so that
the nuisance factors are held constant across the experiment. When the objective
of the experiment is factor screening or process characterisation, it is usually best
to keep the number of factor levels low.

Having the response variables and the factors and their levels, the next step is
to choose the experimental design. We need to define, for example, the sample size
and number of replicates. A replicate is a single item or element in an experiment
run. We need to define a proper run order for the experimental trials and determine
whether or not blocking or other randomisation restrictions are involved. We are
interested in identifying which factors that cause this difference and in estimating
the magnitude of the response change. Also necessary is the type of model we want
to find, first-order models and interactions, second-order models for optimisation,
or binomial experimental design.

We recommended running pre-experimental runs to identify factor levels and
ranges so that we can use this information to design the experiments. For example,
using a cause and effect diagram, we could identify controllable and uncontrollable
factors.

Experimentation is an iterative process. To learn, we formulate a hypothesis
about a system. We run experiments to investigate this hypothesis, and on the
results, we develop a new hypothesis, and so on. We advised running a few tri-
als before performing the experiment to verify that data is collected correctly and
suitable for the analysis.

We could use graphical methods to help with the interpretation. Like the fishbone
diagram or also known as the Ishikawa diagram [18] created to identify the causes
of a quality problem.

We included links to resources and documentation of different statistical methods
to compare variables and analyse the results.

Statistical methods can not prove that a factor (or a set of factors) has a partic-
ular effect. They only provide guidelines as to the reliability and validity of results.

9.3 Experimental questions

From the workshop we chose six analytical questions that are described below:

1. Filter differential pressure

2. Impact of low-quality oil

3. Impact of fuel quality

4. Vibration measurement

5. Determine better or worst performing assets

Chapter 9 Diego Alejandro Arenas Contreras 131

Data Science use cases in the Manufacturing Industry

6. Sensors added value

9.3.1 Filter differential pressure

We wanted to determine the correct times for maintenance and replacement intervals
of the differential pressure filter. Specifically, we want to monitor and proactively
schedule the maintenance and replacement of filters measuring the oil differential
pressure.

A blocked filter may increase the temperature inside the machines and cause the
malfunction them. Implementing proactive filter changes improves the airflow into
the containers leading to better efficiency.

The benefits of implementing proactive filter changes are operational, having a
more efficient maintenance schedule. Better maintained assets may have a longer
life.

Finally, this analysis can decrease the downtime of machines due to unexpected
maintenances produced by differential pressure, which is a common scenario when
the assets are not constantly monitored.

This project aims to find the right time for filter replacement on-air and oil
filters. Sensors are measuring the pressure for air filters, and there will be necessary
to start measuring the oil filter differential pressure.

The current process to obtain differential pressure filters is performing field trials
on machines to determine how the filters age and measure the differential pressure.
This process is followed in one of the project sites for air filters, but it would be
ideal for estimating the different machines operating across the various project sites
worldwide.

For oil filters, there are sensors attached in machines that work with gas, but
they are not used now.

The data for air filters are stored in local SCADA systems located in the project
sites. The oil filters sensors need to be attached to the machines and start the data
collection.

9.3.2 Impact of low-quality oil

The question is, what is the impact of using low-quality oil on the engines? Is there
degradation of parts faster than using standard or high-quality oil? Does the oil
have a shorter life? Does it generate more blocked filters?

Answering this question could have an operational impact on other parts of the
machine. The oil quality may be impacting the ageing process of the engine parts
using the oil, leading to a faster depreciation of the machine. It also could be
affecting adding more unplanned failures leading to site downtime.

The data for this project is a database with oil samples taken at intervals of
around 250 hours for projects of Power Solutions.

The project in Chapter 5 implements a data architecture to collect, combine,
and centralise the data stored in local SCADA systems in project sites and creates
proactive alarms to notify potential malfunctioning of assets to minimise downtime
on the sites.

132 Chapter 9 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

9.3.3 Impact of fuel quality

The question of this potential experiment is what is the impact of the fuel quality
on the lifespan of an asset?

The operational benefits of computing this analysis impact a more efficient way
to replace fuel filters, increase the injector and fuel pumps lifespan, minimise the
debris circulating inside the engine. Combustion byproducts can build up on pistons
requiring more cleaning. Also, incomplete or poor combustion lead to lower efficiency
of the generator set.

Bad fuel quality may lead to increased operational costs because the asset will
consume more fuel to deliver the same power and will require maintenance sooner
than using better fuel quality.

One of the challenges of answering this question is that high-quality fuel might
be scarce in some regions of the planet. Fuel quality varies over time on the project
site depending on the availability daily.

The current process is collecting samples on bottles of gas and diesel. There is
no data reference for the weather that may impact the performance of the machines.

The data for this project are the bottle samples of fuel from project sites.

9.3.4 Vibration measurement

This question tries to determine the best approach for maintaining rotating ma-
chinery and service needs if it is better to have spot maintenances or scheduled
continuous services based on vibration measurements on the machines.

The benefit of answering this question is operational as we are trying to avoid
catastrophic failures or the engines or alternator on the machine.

The challenge with this project is the use of expensive equipment and extensive
validation needed to understand the expected performance of each type of equip-
ment.

There is no data collection happening to answer this question. To implement
the project, sensors must be acquired and attached to the machines; multiple tests
would be necessary to determine the best location inside the generator to measure
vibration. Different devices would require other sensors because of the internal space
distribution of the parts of the generators in the containers.

9.3.5 Determine better or worst performing assets

This question tries to determine specific fuel consumption patterns to identify better
or worst-performing assets.

9.3.6 Sensors added value

Among all the sensors attached to a specific type of machine, are they being used to
make decisions? Prevent failures? What is the added value of the sensors attached
to devices? Are more sensors required? Different types of sensors? A reduced
number of sensors would achieve the same results?

The idea is to test the hypothesis that some sensors are underused and are
attached to every machine.

Chapter 9 Diego Alejandro Arenas Contreras 133

Data Science use cases in the Manufacturing Industry

9.4 Implementation

We started with the fifth question from the workshop. Identifying the better or
worst-performing asset has medium complexity. There was data available about the
fuel consumption of the assets. We will explain in the data exploration how we
narrowed the data sources to find the necessary data to answer this question about
fuel consumption.

Problem Statement

Over time some assets decay their efficiency in fuel consumption. Not all generators
have a workload all the time. It depends on the demand on the project site, and this
demand can vary over time. When power demand increases, connecting more assets
to the power grid that delivers energy from the project site is necessary. Being able
to select the more fuel-efficient assets represent cost savings and better service for
the customers.

The question is can we determine the best and worst asset in terms of fuel con-
sumption?

9.4.1 Data Exploration

We use the data profiling tool presented in Chapter 2 to explore the telemetry
database. We found 248 tables with more than 48 hundred columns and 813 million
rows when we ran the profiling. It was challenging to explore this database without
its schema or data dictionary, which we didn’t have.

The profiling tool creates a metadata database with the information collected
from the tables. We mainly used this metadata database to identify the columns
and tables required to compute the analysis.

We identified four common column names across the database: UID, NAME,
UNIT ID and NODE. They have different syntaxes for the codes they use in the
database, but they are connected somehow because we could see combinations of
columns present in the same tables. Based on these four columns, we identified the
unique values of those columns in other tables of the database, so that we extended
the search for other ID columns so that for the operational tables, the ones with
more records, we identified what the ID columns that are used in them and their
data domains were. We summarised the tables indicating what information the
table stored and which of the four IDs we could use to join that transactions table
with the rest of the data model. We also knew the number of unique values each ID
had for that table.

In one day, we explored the whole dataset using only its metadata to navigate
through its content. We were able to identify relationships between the tables using
the data domain of the ID columns and search them at once in all the other columns
of the database but using the metadata. This search was efficient as each value is
stored only once with its frequency.

We discovered that the table we needed was the fuel raw table with 30 million
rows. We found the other tables to relate fuel tanks with a contract and a project
site.

134 Chapter 9 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

Figure 9.1: Plots of the level of litres in the tank over time in blue line and fuel
consumption rate in orange.

9.4.2 Data preprocessing

The analysis of fuel consumption was made using only hired machines. Hired ma-
chines are allocated to a customer and a project site.

The generators can have three statuses: 1) Standby, 2) running, and 3) running
with a load. The analysis is focused only when the assets are running with a load
by indication of the stakeholders of the project.

The status of the machines is collected in the database, so we combined the
fuel levels and their status only to use the fuel consumption when the engines were
running with load.

The fuel consumption data behaves as a saw chain, as can be seen in Figure 9.1.
We filtered the data points not to use the upper and lower measurements for two
reasons. We could not know when the tank was refilled, so that difference in time
could affect the computation. Because we needed to compute a rate, we needed the
differences between the data points to be positive to calculate the slope of simple
linear regression.

We computed the fuel consumption rate between all the contiguous data points
and averaged them to determine the rate for the asset.

We filtered out some data points from the consumption rate. Those data points
were out of range, as can be seen in Figure 9.2. We tried different methods generally
used for anomaly detection. We used the support vector machine algorithm and
isolation forest. We preferred isolation forest for its capacity to capture more outliers
from the data.

9.4.3 Data Analysis

We wanted to find the fuel consumption rate of different assets and compare them
to determine better and worst-performing assets. We also wanted to identify factors
that may produce this difference.

We identified the asset types of each machine allocated to a project site.
The fuel consumption is determined by:

C = E ∗ Ckwh

Chapter 9 Diego Alejandro Arenas Contreras 135

Data Science use cases in the Manufacturing Industry

Figure 9.2: Anomaly detection on the fuel consumption rate data. The anomalies
are the red dots that will be filtered out to compute the average fuel consumption.

Figure 9.3: Ranking of assets allocated to one project site sorted by fuel consumption
per hour. uid is the unique identifier of a machine, the number on the right is fuel
consumption rate.

E is the active electric energy in the output of the diesel engine in kWh.

E = P ∗ h ∗ d(kWh)

P is the active electric power in the output of the diesel generator in kW.

P = S ∗ cosphi

Where S is the apparent electric power in the output of the diesel engine in
kVA S = P/cosphi. Cosphi is the power factor (usually between 0.8 and 1). h
is the number of hours per day the generator runs. d is the number of days the
power generator runs. And Ckwh is the consumption of fuel per kWh (usual value
is between 0.3 and 0.6 (l/kWh)).

We reused code from the fuel tank battery analysis presented in Chapter 8. We
have already identified some dimension tables and identified some of the tables that
store telemetry data.

We had the active power data and the cosine of phi from the data source.

136 Chapter 9 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

The fuel level data was sampled every thirty minutes by default. The generator
status data were reported when they changed, so that we assumed the same status
until the next status data point. We

We encapsulated the most frequent queries to simplify the process of getting data
from the database. To get the fuel level and status of the asset was a parametric
function so that we could try different approaches and get the data We wrapped the
pre-processing data tasks so that we could call the parts from the notebooks.

We performed the analysis using SQL and Python. First, using the metadata
database, and once we identified the tables we needed, we used the data source
database to run the queries and analysis. Using Python scripts, we queried the data
and then processed it using Python commands.

The first analysis was to estimate the number of project sites and the number
of machines allocated to each project site. This analysis was simple thanks to the
identification of the tables with automated data profiling. Otherwise, it would have
required to explore more than eight hundred tables because there is no schema or
data catalogue about the data.

We created a function get fuel consumption mean(uid, days = -10) that returned
the average fuel consumption of an asset per hour considering the last ten days of
fuel data. The UID is a unique identifier of the machine. With this hourly fuel
consumption, we can rank the assets in a project and determine what are the assets
that consumes more or less fuel while they are working with load as we can see in
Figure 9.3.

We further applied the analysis to three different levels of workload. We cate-
gorised the percentage of load based on the workload as a percentage of the maxi-
mum capacity of the generator. We classified the percentage of workload into three
categories: below 50% as low workload, between 50% and 80% as medium workload,
and above 80% as high workload. We computed the fuel consumption rate for each
of the ranges low, medium and high workload to check if, depending on the load
that the asset had at the time, the consumption rate might depend on the type of
workload. The fuel consumption rate was different depending on the workload, but
the ranking of the assets remained in the same order.

9.5 Results

We completed the work of identifying the best and worst-performing assets given
their fuel levels and statuses. The next step was to use this calculation in the project
sites.

Two strategies were planned to deploy this solution, 1) as a batch processing tool
where we could rank the generators offline and send or publish an updated list of the
generators to the project sites for them to have the information of what assets are
more recommendable to use based on the conditions demanded; and 2) as a module
inside the software that controls the plant in the project sites.

We started the conversations to attach our fuel consumption calculation as a
module to the controlling software of the project sites. At the time of evaluating
this option, we halted the project due to a change of priorities, and the analysis was
conclusive and available. Still, it was not deployed to the project site.

Chapter 9 Diego Alejandro Arenas Contreras 137

Data Science use cases in the Manufacturing Industry

At the time of this project, there was no central repository for the data of project
sites. In Chapter 5 we explored the construction of an analytical database that could
store the data used on this project and would facilitate the deployment of the fuel
performance results of the assets.

9.6 Further development

From the analysis of how the machines are working and consuming fuel, it would
be trivial to determine the opposite. What are the unused assets, and why? This
question could be answered and create red flags for the support that are not rotating
in the fleet of machines.

138 Chapter 9 Diego Alejandro Arenas Contreras

Chapter 10

Conclusions

The basis for this thesis is a simple question: how does an organisation best become
data-driven?

We believe we contributed to becoming a more data-driven organisation based
on principles taken from the software engineering field of knowledge. We made spe-
cific contributions with targeted analysis to provide timely information to decision-
makers. We also made more general contributions by building the tools to imple-
ment the specific contributions and writing guidelines and recommendations from
the experience of the implementation of the projects.

We applied best practices from software engineering to successfully deliver data
science projects based on the principles of scalability, abstraction, encapsulation,
and extensibility. We encapsulated and automated repeatable tasks and created
recommendations for the rest of the team to follow.

Across the multiple projects, we made recommendations to the data science
and data engineering teams. For example, the design of the data engineering library
showed an excellent reference point for the design of a data science library where the
data scientists are encapsulating data collection and the use of algorithms tailored to
the data science processes of the organisation. The execution of the EngD projects
was, we believe, capacity building for the data science and data engineering teams
that now can build on top of the developments achieved in the tasks of the EngD
and reuse the methodology and documentation generated in the repository of the
projects.

The methodology used for the projects, framing the project under a research
question and computing an exploratory data analysis to understand the problem
better, proved helpful for all the projects. We modelled the problem based on the
data available.

Technology decisions can be costly over time if we compare them with decisions
about processes. Processes can be adapted and modified over a short period. But
technology decisions such as what technology stack will the company use, what pro-
gramming language will be the one that newcomers should use for all their projects,
and so on have a more significant impact. These decisions have a long term impact.

We often referred to the technology stack of the organisation in the chapters.
We believe this is a crucial point that enables and amplifies the work of the ana-
lysts working in the organisation. The incremental gains given by the correct use
of technology that a skilled analyst can achieve represents the difference between a
successful delivery of a related data project or not. For this reason, any organisation

139

Data Science use cases in the Manufacturing Industry

needs to have a continuous process of evaluating emerging technologies. One way
to do that is to incorporate the use of new technologies as part of project activi-
ties to decide the usefulness of these sometimes hyped technologies and decide by
themselves, the organisation, if the incorporation of a new technology could bring
benefits or not to the internal processes.

At the same time as the exploration of new technologies, there is a balance
between the number of tools that an organisation uses and the number of problems
for which those tools are used. An extreme case would be that only one technology
is used for all the use cases and data processes the organisation has. The other
extreme is to adopt a different tool for each use case. The balance should consider
the cost, and required skills, of maintaining different and multiple platforms and the
benefits of using that particular tool. There is the need then to use the correct type
of technology to solve a specific kind of problem. Adopting or replacing technologies
should be a thoughtful process that involves constant evaluation and training of the
people using the technologies because there is a risk of under-utilising the potential
of the technologies adopted.

We tried to investigate and incorporate new technologies from the design of the
EngD projects so that we would learn something new simultaneously; we would as-
sess technologies that could be useful to adopt to a data-driven organisation. We
would advise allocating effort in the projects to use or learn a new tool, library, pol-
icy, etc., that is related to the project, but the organisation has not adopted that.
This scouting process could become a standard practice that could spark innovation
by having early access and evidence of the workings of new technologies.

Thinking in general about the data projects presented in this thesis document,
we can reflect that the most successful projects were those that the stakeholders were
most involved in, interested in hearing the results along with the development of
the projects. In our opinion, the projects with low stakeholder involvement tended
to last more due to unanswered questions or lack of guidance on the next steps of
the projects. We mitigated risks and solved the problems early in the process, so no
greater impact in those projects with higher stakeholder involvement.

Something that we will include from now on in our risk assessments of future
projects, is to add an exit plan for when there is a change in the priorities of stake-
holders, what to do if the priorities of the stakeholders change while the project
is in development. It may sound non-necessary because if users and stakeholders
commit time and resources to take in a data science project,t is expected that they
will stay until the completion of the project. We had a couple of situations where
the priorities of the stakeholders changed due to externalities, so for those cases, it
would be good to have an exit plan where it is stated clear what to do depending
on the stage of the project and how to maximise the contribution of the effort if a
project is halted.

Working on the data projects during the EngD, we realised that no project or
success story would have been possible without the collaboration and support of the
colleagues and management of the organisation. The collaborative spirit prompt to
solve any issue during the implementation of the projects was a constant contribut-
ing factor to the success of the performance of the EngD projects. In one of the first
retrospective meetings and the beginning of the programme, one of the quotes that

140 Chapter 10 Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

stuck with us was: “It is incredible how much can be accomplished if no one cares
who gets the credit.” (John Wooden) and that still resonates with us in the way
to approach new projects and collaborate with other people. This simple quote, in
some sense, reflects the collaboration and teamwork of the organisation. This col-
laborative culture is a takeaway for us to apply to future projects and endeavours.

Most of the projects presented in this thesis used structured data and internal
data sets. A recommendation for future research would be to evaluate the usage of
unstructured data such as images and text from available open data sets. Incorpo-
rating this type of data could improve and present opportunities for the data science
team on their machine learning models and understanding of the events they are
modelling. We would recommend using a DevOps and DataOps approach to data
projects to maintain close communication with the stakeholders. Finally, we would
advise incorporating an interpretability step to the machine learning development
process that could benefit the analyst to understand better the machine learning
models and to the stakeholders to learn the reasons for the scoring results from the
models.

We can classify the data projects into mainly two categories. Long term projects
implementing a new architecture or solution to be stable over time and ad-hoc anal-
ysis where the focus is on an insight or gaining quick knowledge about a problem
for a decision-maker. We believe that both types of projects are relevant in their
own way. Long-term projects are required to scale and implement stable processes
over time, optimising the efforts of the organisation, and ad-hoc analysis are impor-
tant because they solve information blockers that allow organisations to support the
decision-making process highly relevant for data-driven organisations. The explo-
ration work of ad-hoc analysis can lead to long-term projects and trigger innovation
faster. This thesis contains both types of projects. The projects presented in Part
I represented more long term projects, and Part II included more specific projects
looking for specific analysis and insights from the data.

The data science and data engineering projects require a mixed set of skills
from the people implementing them. As it happens with the tools, there is no silver
bullet skill or experience to solve any type of problem. The projects vary in difficulty,
impact, return of investment, and the variety of users and stakeholders. The level
of expertise of the team can be a relevant factor in the success of implementation.
We believe that mixing the level of experience and skills can work well to develop
the shared pool of skills within the team.

The broad range of exposure working with people in technology, the business,
and the organisation’s management gave me a perspective to work and communicate
with stakeholders. It also provided me with the formation of soft skills.

This thesis presented a series of data science and data engineering projects im-
plemented to help become a data-driven organisation. An organisation able to make
decisions based on information generated from data. The data related projects fol-
lowed best practices from software engineering, making relevant the utility of these
methods. A data-driven organisation can benefit significantly from a data science
and data engineering team with skills from a software engineering background. A
data-driven organisation also cares about the toolsets for the analysts. The set

Chapter 10 Diego Alejandro Arenas Contreras 141

Data Science use cases in the Manufacturing Industry

of platforms and infrastructure can expand the talent of the people working with
them. The technology stack an organisation chooses to work with determines how
effective and efficient that organisation can become. And together, the people and
tools shape the culture of the organisation. These three components are crucial to
maintain and constantly develop the data solutions in the organisation.

The automation of processes and the use of novel technologies to solve the in-
formation needs, the search for use cases before implementing new technologies, the
design for scalability and extensibility, communication with the stakeholders and
collaborative work with the project team are all, in general, contributing factors to
becoming a data-driven organisation. Once the organisation achieves the capabili-
ties of answering questions with insights from data analysis, it becomes a constant
process and shared responsibility within the team to maintain it.

142 Chapter Diego Alejandro Arenas Contreras

Appendix A

Appendix: Survey questions

Question of the survey to internal analysts.

1. What analytic tools for data science, machine learning do you use or plan to
use to train machine learning models?

2. How would be the process(es) you would follow to deploy a ML model into
production?

3. In your opinion, what are the common problems when you try to deploy a
machine learning model into production?

4. What technologies, platforms, tools, or frameworks would you recommend to
explore and review to deploy machine learning models in production environ-
ments? Please name all the ones you think could be relevant.

5. What are the most important features in a platform for ML model manage-
ment? Mark all the ones you consider important.

• Scalability

• Integration with existing tools

• Simplicity

• Easy to deploy

• Easy to maintain

• Usability

• Error checking

• Auto training of ML models

• Performance monitoring of the deployed ML models

• Easy to train ML models

• Low latency for serving models

• Non dependent on the framework of the trained model

• Can handle ensemble models

• Minimal configuration

6. In a scale of 1 to 10 where 1 is not useful at all, and 10 is very useful. In your
opinion, how useful is to have a tool for ML models governance?

143

Data Science use cases in the Manufacturing Industry

7. What kind of ML models are you planning to deploy in production within the
next 6 months or after? (You can refer to the use case, algorithm, technology,
etc. or all of the above)

8. Please let me know if you have any feedback and comments.

144 Chapter A Diego Alejandro Arenas Contreras

Appendix B

Appendix: Infrastructure
configuration

In a Linux/GNU server with Docker.

B.1 Docker

This are the docker images to pull

docker pull postgres:9.6

docker pull kiwenlau/hadoop:1.0

docker pull jupyter/datascience-notebook

docker pull jupyter/base-notebook

docker pull python:2.7

docker pull docker.elastic.co/kibana/kibana:5.4.3

docker pull docker.elastic.co/elasticsearch/elasticsearch:5.4.3

B.2 Kafka Server

Edit the following lines on the In the modify the following lines on file config/server.properties.

delete.topic.enable=true

advertised.listeners=PLAINTEXT://kafka-server:9092

On the file bin/kafka-run-class.sh edit this lines:

-Dcom.sun.management.jmxremote \

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false \

-Dcom.sun.management.jmxremote.rmi.port=<PORT>

-Djava.rmi.server.hostname=<IP> \

-Dcom.sun.management.jmxremote.port=<PORT>

Setting up the environmnet.

Create a network called telemetry

docker network create telemetry

145

Data Science use cases in the Manufacturing Industry

Starts a single node Kafka server

docker run -itd --name kafka-server \

-h kafka \

--network=telemetry \

-p 2181:2181 -p 9092:9092 -p 9999:9999 \

darenas/kafka:1.3 bash

docker run -itd --name kafka \

-h kafka \

--network=telemetry \

-p 2181:2181 -p 9092:9092 -p 9999:9999 -p 1098:1098 \

darenas/kafka:1.3 bash

start ZooKeeper

bin/zookeeper-server-start.sh config/zookeeper.properties

start Kafka Server

bin/kafka-server-start.sh config/server.properties

create the topic telemetry

bin/kafka-topics.sh --create --zookeeper localhost:2181 \

--if-not-exists --replication-factor 1 \

--partitions 1 --topic telemetry

check the topics in kafka

bin/kafka-topics.sh --list --zookeeper localhost:2181

start a consumer to check the incoming messages

bin/kafka-console-consumer.sh \

--bootstrap-server localhost:9092 \

--topic telemetry --from-beginning

to delete the telemetry topic

bin/kafka-topics.sh --zookeeper localhost:2181 \

--delete --topic telemetry

146 Chapter B Diego Alejandro Arenas Contreras

Appendix C

Appendix: Other contributions

I had the privilege to work on interesting side projects during my EngD. The side
projects were a way to continue with my learning path and professional and per-
sonal self-development [91], [84]. I often used the gained knowledge from these side
projects in the projects presented in the chapters of this thesis.

In 2017 I started volunteering at a data science charity based in London called
DataKindUK1 and participating in applied collaborative data science events. I de-
veloped one of my interests since I was a recent graduate, which is Data for Good
or the use of data science methods for the Common Good [40].

In 2018, two position papers were written by Diego on Data for Good. The
Case for Data For Good2 and Scalable Digital Volunteering: A Data for Social
Good Marketplace3 where it is presented why is necessary to scale the volunteering
work using digital and collaborative platforms. In the other paper it is explained
the design of a platform for collaboration on data science projects for the common
Good.

The design of that platform data science platform for Data for Good led to the
collaboration with a working group about that was about to start working on a
blueprint for a Data Safe Haven. The overlapping of Data Safe Haven ideas and
a data platform for processing and storing data for data science projects led me
to join the group. Diego was invited as a Visiting Researcher at the Alan Turing
Institute, we he contributed to the work published on this paper on Design choices
for productive, secure, data-intensive research at scale in the cloud [86].

Around the same time, Diego joined the development group of a new and promis-
ing machine learning library written in the Julia4 programming language. He was
one of the first maintainers of the library MLJ: A Julia package for composable ma-
chine learning [93]. The experience from the work on this open-source project was
key for the designs of the libraries presented in Chapters 2 and 6.

During the EngD, I was constantly learning about new technologies and ar-

1Official website of DataKindUK, https://datakind.org.uk (accessed 25 October 2021).
2Downloadable at https://darenasc.github.io/files/TheCaseForDataForGood.pdf (accessed 25

October 2021).
3Downloadable at https://darenasc.github.io/files/ScalableDigitalVolunteering.pdf (accessed 25

October 2021).
4Official website of the Julia programming language, https://julialang.org (accessed 25 October

2021).

147

Data Science use cases in the Manufacturing Industry

chitectures, practising my coding skills. A way to practise was to explain the
exciting topics that I would find are of interest to people I talked to. I wrote
twenty-eight blog posts about data science, machine learning and big data in a
technical conference blog of a data science conference that received contributions
(https://opendatascience.com/user/darenasc/). I recorded three episodes of pod-
casts interviewing people in the world of data science and data for Good. I wrote a
series of three posts about Data Science for Good.

In 2018 and 2019, Diego co-organised with other postgraduate students from
the University of Edinburgh, an annual conference called Thinking Chile in Edin-
burgh5. Inviting researchers living in the UK to present their research related to
Latin American countries and the region. The 2018 version6 had two tracks: 1)
Creativity, Culture and Society and Health and 2) Environment, and Technology for
Social Development. The 2019 version7 had four tracks: 1) One Health for Latin
American Development, 2) Sustainable Cities in Latin America, 3) Artificial Intel-
ligence and 4) Arts, Culture and Society.

Since 2019, I started co-hosting a podcast about artificial intelligence and data
science called EscuchAI8. The podcast aims to inform the public about topics in
artificial intelligence and data science in layman terms and spread knowledge to
interested people who may not have the background to get into these topics.

In 2020, Diego’s interest in Data Science for Social Good took him to be one of
the Technical Mentors at the Data Science for Social Good summer program9 in the
UK organised by the Alan Turing Institute and The University of Warwick. And
collaborating with the organisation of 2019, 2020, and 2021 versions of the program
in the UK.

5Video resource presenting the Conference, https://vimeo.com/319034557 (accessed 26 October
2021).

6Thinking Chile website 2018, https://sites.google.com/view/thinkingchile/page (accessed 26
October 2021).

7https://sites.google.com/view/thinking-chile-2019/page
8”Escucha” means ”to listen” and with the suffix AI for artificial intelli-

gence. The episodes are available at this link http://escuchai.com (accessed 26
October 2021). The welcome pack of the conference is available on this link
https://drive.google.com/file/d/11eR7Y15iESaS72FUxZ1W4AOXpg38Pb5q/view (accessed
26 October 2021).

9Website of the DSSGxUK 2019 in the Alan Turing Institute website,
https://www.turing.ac.uk/collaborate-turing/data-science-social-good (accessed 26 October
2021).

148 Chapter C Diego Alejandro Arenas Contreras

Bibliography

[1] Edgar F Codd. “A relational model of data for large shared data banks”. In:
Communications of the ACM 13.6 (1970), pp. 377–387.

[2] Peter Pin-Shan Chen. “The entity-relationship model—toward a unified view
of data”. In: ACM transactions on database systems (TODS) 1.1 (1976), pp. 9–
36.

[3] John W Tukey. Exploratory data analysis. Vol. 2. Reading, Mass., 1977.

[4] George EP Box, William H Hunter, Stuart Hunter, et al. Statistics for exper-
imenters. Vol. 664. John Wiley and sons New York, 1978.

[5] John Norman Richard Jeffers. Design of experiments. Vol. 1. Institute of Ter-
restrial Ecology, 1978.

[6] Assigned numbers. RFC 790. Sept. 1981. doi: 10 . 17487 / RFC0790. url:
https://rfc-editor.org/rfc/rfc790.txt.

[7] Michael Stonebraker and Lawrence A Rowe. The design of Postgres. Vol. 15.
2. ACM, 1986.

[8] J-L Hainaut, Muriel Chandelon, Catherine Tonneau, and Michel Joris. “Con-
tribution to a theory of database reverse engineering”. In: [1993] Proceedings
Working Conference on Reverse Engineering. IEEE. 1993, pp. 161–170.

[9] Jim Melton and Alan R Simon. Understanding the new SQL: a complete guide.
Morgan Kaufmann, 1993.

[10] Frederick P Brooks Jr. The mythical man-month: essays on software engineer-
ing. Pearson Education, 1995.

[11] William H Inmon. “What is a data warehouse”. In: Prism Tech Topic 1.1
(1995), pp. 1–5.

[12] William H Inmon, Claudia Imhoff, and Greg Battas. Building the operational
data store. John Wiley & Sons, Inc., 1995.

[13] UM Feyyad. “Data mining and knowledge discovery: Making sense out of
data”. In: IEEE expert 11.5 (1996), pp. 20–25.

[14] Ralph Kimball. The data warehouse toolkit: practical techniques for building
dimensional data warehouses. John Wiley & Sons, Inc., 1996.

[15] Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas
Reinartz, Colin Shearer, and Rüdiger Wirth. “The CRISP-DM user guide”.
In: 4th CRISP-DM SIG Workshop in Brussels in March. Vol. 1999. 1999.

[16] Axel Daneels and Wayne Salter. “What is SCADA?” In: (1999).

149

Data Science use cases in the Manufacturing Industry

[17] Armando Fox and Eric A Brewer. “Harvest, yield, and scalable tolerant sys-
tems”. In: Proceedings of the Seventh Workshop on Hot Topics in Operating
Systems. IEEE. 1999, pp. 174–178.

[18] Joseph M Juran, A Blanton Godfrey, Robert E Hoogstoel, and Edward G
Schilling. Juran’s quality handbook 5th ed. 1999.

[19] Eric A Brewer. “Towards robust distributed systems”. In: PODC. Vol. 7.
10.1145. Portland, OR. 2000, pp. 343477–343502.

[20] Hausi A Müller, Jens H Jahnke, Dennis B Smith, Margaret-Anne Storey, Scott
R Tilley, and Kenny Wong. “Reverse engineering: a roadmap”. In: Proceedings
of the Conference on the Future of Software Engineering. 2000, pp. 47–60.

[21] Rüdiger Wirth and Jochen Hipp. “CRISP-DM: Towards a standard process
model for data mining”. In: Proceedings of the 4th international conference on
the practical applications of knowledge discovery and data mining. Springer-
Verlag London, UK. 2000, pp. 29–39.

[22] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. “Why and where: A
characterization of data provenance”. In: International conference on database
theory. Springer. 2001, pp. 316–330.

[23] Andrew Y Ng, Michael I Jordan, and Yair Weiss. “On spectral clustering:
Analysis and an algorithm”. In: Advances in neural information processing
systems. 2002, pp. 849–856.

[24] Leo L Pipino, Yang W Lee, and Richard Y Wang. “Data quality assessment”.
In: Communications of the ACM 45.4 (2002), pp. 211–218.

[25] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google file
system”. In: ACM SIGOPS operating systems review. Vol. 37. 5. ACM. 2003,
pp. 29–43.

[26] Eric Evans and Eric J Evans. Domain-driven design: tackling complexity in
the heart of software. Addison-Wesley Professional, 2004.

[27] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Bri-
anna Laugher, and Florian Bruhin. pytest x.y. 2004. url: https://github.
com/pytest-dev/pytest.

[28] Alexey Tsymbal. “The problem of concept drift: definitions and related work”.
In: Computer Science Department, Trinity College Dublin 106.2 (2004), p. 58.

[29] Christopher M Bishop. “Machine learning and pattern recognition”. In: Infor-
mation science and statistics. Springer, Heidelberg (2006).

[30] Todd G Nick. “Descriptive statistics”. In: Topics in Biostatistics. Springer,
2007, pp. 33–52.

[31] Ana Isabel Rojão Lourenço Azevedo and Manuel Filipe Santos. “KDD, SEMMA
and CRISP-DM: a parallel overview”. In: IADS-DM (2008).

[32] Tim Brown et al. “Design thinking”. In: Harvard business review 86.6 (2008),
p. 84.

[33] Kitty J Jager, Paul C Van Dijk, Carmine Zoccali, and Friedo W Dekker. “The
analysis of survival data: the Kaplan–Meier method”. In: Kidney international
74.5 (2008), pp. 560–565.

150 Chapter C Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

[34] Dean J Ghemawat S MapReduce. “simplified data processing on large clusters
[J]”. In: Commun. ACM 1 (2008), pp. 107–113.

[35] JinGang Shi, YuBin Bao, FangLing Leng, and Ge Yu. “Study on log-based
change data capture and handling mechanism in real-time data warehouse”. In:
2008 international conference on computer science and software engineering.
Vol. 4. IEEE. 2008, pp. 478–481.

[36] Panos Vassiliadis. “A survey of extract–transform–load technology”. In: In-
ternational Journal of Data Warehousing and Mining (IJDWM) 5.3 (2009),
pp. 1–27.

[37] Kristin Weber, Boris Otto, and Hubert Österle. “One size does not fit all—a
contingency approach to data governance”. In: Journal of Data and Informa-
tion Quality (JDIQ) 1.1 (2009), pp. 1–27.

[38] Vijay Khatri and Carol V Brown. “Designing data governance”. In: Commu-
nications of the ACM 53.1 (2010), pp. 148–152.

[39] Skipper Seabold and Josef Perktold. “statsmodels: Econometric and statistical
modeling with python”. In: 9th Python in Science Conference. 2010.

[40] Diego Arenas Contreras. “Strategic Business Intelligence for NGOs”. In: CEPIS
UPGRADE Vol. XII, issue No. 3, July 2011. Council of European Professional
Informatics Societies. 2011, pp. 38–42.

[41] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging
system for log processing”. In: Proceedings of the NetDB. 2011, pp. 1–7.

[42] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. “Scikit-learn: Machine learning in Python”.
In: the Journal of machine Learning research 12 (2011), pp. 2825–2830.

[43] Raymond PL Buse and Thomas Zimmermann. “Information needs for software
development analytics”. In: 2012 34th International Conference on Software
Engineering (ICSE). IEEE. 2012, pp. 987–996.

[44] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y Halevy, Hongrae Lee,
Fei Wu, Reynold Xin, and Cong Yu. “Finding related tables”. In: (2012).

[45] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. “Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing”. In: Proceedings of the 9th USENIX conference on Networked Sys-
tems Design and Implementation. USENIX Association. 2012, pp. 2–2.

[46] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica.
“Discretized Streams: An Efficient and Fault-Tolerant Model for Stream Pro-
cessing on Large Clusters.” In: HotCloud 12 (2012), pp. 10–10.

[47] David Loshin. Big data analytics: from strategic planning to enterprise inte-
gration with tools, techniques, NoSQL, and graph. Elsevier, 2013.

[48] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh
M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake
Donham, et al. “Storm@ twitter”. In: Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM. 2014, pp. 147–156.

Chapter C Diego Alejandro Arenas Contreras 151

Data Science use cases in the Manufacturing Industry

[49] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. “OpenML:
networked science in machine learning”. In: ACM SIGKDD Explorations Newslet-
ter 15.2 (2014), pp. 49–60.

[50] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. “Apache flink: Stream and batch processing in a single
engine”. In: Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering 36.4 (2015).

[51] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christo-
pher Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Sid-
darth Taneja. “Twitter heron: Stream processing at scale”. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data.
ACM. 2015, pp. 239–250.

[52] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. “Hidden technical debt in machine learning systems”. In: Ad-
vances in neural information processing systems. 2015, pp. 2503–2511.

[53] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, et al. “Tensorflow: A system for large-scale machine learning”. In: 12th
{USENIX} symposium on operating systems design and implementation ({OSDI}
16). 2016, pp. 265–283.

[54] Diego Arenas Contreras. “Automatic hierarchical data extraction from rela-
tional databases”. MA thesis. The University of Edinburgh, 2016.

[55] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim
Kraska. “The case for interactive data exploration accelerators (IDEAs)”. In:
Proceedings of the Workshop on Human-In-the-Loop Data Analytics. 2016,
pp. 1–6.

[56] J. Dunn. Introducing FBLearner Flow: Facebook’s AI backbone. 2016. url:
https://code.fb.com/core-data/%20introducing-fblearner-flow-

facebook-s-ai-backbone/ (visited on 05/09/2016).

[57] Raul Castro Fernandez, Ziawasch Abedjan, Samuel Madden, and Michael
Stonebraker. “Towards large-scale data discovery: position paper”. In: Proceed-
ings of the Third International Workshop on Exploratory Search in Databases
and the Web. 2016, pp. 3–5.

[58] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel.
“The emerging role of data scientists on software development teams”. In: 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE. 2016, pp. 96–107.

[59] Zachary C Lipton. “The mythos of model interpretability”. In: arXiv preprint
arXiv:1606.03490 (2016).

[60] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et
al. “Mllib: Machine learning in apache spark”. In: The Journal of Machine
Learning Research 17.1 (2016), pp. 1235–1241.

152 Chapter C Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

[61] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should i trust
you?: Explaining the predictions of any classifier”. In: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data min-
ing. ACM. 2016, pp. 1135–1144.

[62] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. “ModelDB: a system
for machine learning model management”. In: Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. ACM. 2016, p. 14.

[63] Yoji Yamato, Hiroki Kumazaki, and Yoshifumi Fukumoto. “Proposal of Lambda
Architecture Adoption for Real Time Predictive Maintenance”. In: Comput-
ing and Networking (CANDAR), 2016 Fourth International Symposium on.
IEEE. 2016, pp. 713–715.

[64] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Za-
karia Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. “Tfx:
A tensorflow-based production-scale machine learning platform”. In: Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. ACM. 2017, pp. 1387–1395.

[65] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E
Gonzalez, and Ion Stoica. “Clipper: A Low-Latency Online Prediction Serving
System.” In: NSDI. 2017, pp. 613–627.

[66] Derek Doran, Sarah Schulz, and Tarek R Besold. “What does explainable
AI really mean? A new conceptualization of perspectives”. In: arXiv preprint
arXiv:1710.00794 (2017).

[67] Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable
machine learning”. In: arXiv preprint arXiv:1702.08608 (2017).

[68] Ted Dunning and Ellen Friedman. Machine Learning Logistics. Model Man-
agement in the Real World. Wiley, 2017.

[69] J. Hermann and M. D. Balso. Meet Michelangelo: Uber’s machine learning
platform. 2017. url: https://code.fb.com/core-data/%20introducing-
fblearner-flow-facebook-s-ai-backbone/ (visited on 09/05/2017).

[70] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken
Goldberg, Joseph E Gonzalez, Michael I Jordan, and Ion Stoica. “RLlib: Ab-
stractions for distributed reinforcement learning”. In: arXiv preprint arXiv:1712.09381
(2017).

[71] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions”. In: Advances in Neural Information Processing Systems. 2017,
pp. 4765–4774.

[72] Douglas C Montgomery. Design and analysis of experiments. John wiley &
sons, 2017.

[73] Robert Nishihara, Philipp Moritz, Stephanie Wang, Alexey Tumanov, William
Paul, Johann Schleier-Smith, Richard Liaw, Mehrdad Niknami, Michael I Jor-
dan, and Ion Stoica. “Real-time machine learning: The missing pieces”. In:
Proceedings of the 16th Workshop on Hot Topics in Operating Systems. ACM.
2017, pp. 106–110.

Chapter C Diego Alejandro Arenas Contreras 153

Data Science use cases in the Manufacturing Industry

[74] Brian Okken. Python Testing with Pytest: Simple, Rapid, Effective, and Scal-
able. Pragmatic Bookshelf, 2017.

[75] Laurel Orr, Magda Balazinska, and Dan Suciu. “Probabilistic database sum-
marization for interactive data exploration”. In: arXiv preprint arXiv:1703.03856
(2017).

[76] Ashish Thusoo and Joydeep Sen Sarma. “Creating a Data-Driven Enterprise
with DataOps”. In: (2017).

[77] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. “Model asser-
tions for debugging machine learning”. In: NeurIPS MLSys Workshop. 2018.

[78] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonza-
lez, and Ion Stoica. “Tune: A research platform for distributed model selection
and training”. In: arXiv preprint arXiv:1807.05118 (2018).

[79] Robert C Martin, James Grenning, and Simon Brown. Clean architecture: a
craftsman’s guide to software structure and design. Prentice Hall, 2018.

[80] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jor-
dan, et al. “Ray: A Distributed Framework for Emerging {AI} Applications”.
In: 13th {USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 18). 2018, pp. 561–577.

[81] Pedro Saleiro, Benedict Kuester, Abby Stevens, Ari Anisfeld, Loren Hink-
son, Jesse London, and Rayid Ghani. “Aequitas: A Bias and Fairness Audit
Toolkit”. In: arXiv preprint arXiv:1811.05577 (2018).

[82] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas, Stephan
Seufert, Gyuri Szarvas, Manasi Vartak, Samuel Madden, Hui Miao, Amol
Deshpande, et al. “On challenges in machine learning model management”.
In: Data Engineering (2018), p. 5.

[83] Sean J Taylor and Benjamin Letham. “Forecasting at scale”. In: The American
Statistician 72.1 (2018), pp. 37–45.

[84] Data Study Group team. Data Study Group Final Report: Codecheck. Sept.
2018. doi: 10.5281/zenodo.1415344. url: https://doi.org/10.5281/
zenodo.1415344.

[85] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong,
Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani
Parkhe, et al. “Accelerating the Machine Learning Lifecycle with MLflow”. In:
Data Engineering (2018), p. 39.

[86] Diego Arenas, Jon Atkins, Claire Austin, David Beavan, Alvaro Cabrejas Egea,
Steven Carlysle-Davies, Ian Carter, Rob Clarke, James Cunningham, Tom
Doel, et al. “Design choices for productive, secure, data-intensive research at
scale in the cloud”. In: arXiv preprint arXiv:1908.08737 (2019).

[87] J. Hermann and M. D. Balso. Interpretable Machine Learning: A Guide for
Making Black Box Models Explainable. 2019. url: https://christophm.

github.io/interpretable-ml-book/ (visited on 04/12/2019).

154 Chapter C Diego Alejandro Arenas Contreras

Data Science use cases in the Manufacturing Industry

[88] Michael Muller, Ingrid Lange, Dakuo Wang, David Piorkowski, Jason Tsay, Q
Vera Liao, Casey Dugan, and Thomas Erickson. “How Data Science Workers
Work with Data: Discovery, Capture, Curation, Design, Creation”. In: Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems.
2019, pp. 1–15.

[89] Alexander Ratner, Dan Alistarh, Gustavo Alonso, Peter Bailis, Sarah Bird,
Nicholas Carlini, Bryan Catanzaro, Eric Chung, Bill Dally, Jeff Dean, et al.
“SysML: The New Frontier of Machine Learning Systems”. In: arXiv preprint
arXiv:1904.03257 (2019).

[90] Md Amran Siddiqui, Alan Fern, Thomas G Dietterich, and Weng-Keen Wong.
“Sequential Feature Explanations for Anomaly Detection”. In: ACM Trans-
actions on Knowledge Discovery from Data (TKDD) 13.1 (2019), p. 1.

[91] Data Study Group team. Data Study Group Final Report: Global bank. Feb.
2019. doi: 10.5281/zenodo.2557809. url: https://doi.org/10.5281/
zenodo.2557809.

[92] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu,
Mukul Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja
 Luszczak, et al. “Delta lake: high-performance ACID table storage over cloud
object stores”. In: Proceedings of the VLDB Endowment 13.12 (2020), pp. 3411–
3424.

[93] Anthony D Blaom, Franz Kiraly, Thibaut Lienart, Yiannis Simillides, Diego
Arenas, and Sebastian J Vollmer. “MLJ: A Julia package for composable ma-
chine learning”. In: arXiv preprint arXiv:2007.12285 (2020).

[94] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. “Model asser-
tions for monitoring and improving ML models”. In: arXiv preprint arXiv:2003.01668
(2020).

[95] Cameron Davidson-Pilon, Jonas Kalderstam, Noah Jacobson, Sean Reed, Ben
Kuhn, Paul Zivich, Mike Williamson, AbdealiJK, Deepyaman Datta, Andrew
Fiore-Gartland, Alex Parij, Daniel WIlson, Gabriel, Luis Moneda, Arturo
Moncada-Torres, Kyle Stark, Harsh Gadgil, Jona, JoseLlanes, Karthikeyan
Singaravelan, Lilian Besson, Miguel Sancho Peña, Steven Anton, Andreas
Klintberg, GrowthJeff, Javad Noorbakhsh, Matthew Begun, Ravin Kumar,
Sean Hussey, and Skipper Seabold. CamDavidsonPilon/lifelines: 0.26.0. Ver-
sion 0.26.0. May 2021. doi: 10.5281/zenodo.4816284. url: https://doi.
org/10.5281/zenodo.4816284.

Chapter C Diego Alejandro Arenas Contreras 155

